

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 11

CIVIL TECHNOLOGY

. . . .

. . . .

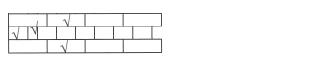
. .

.......

EXEMPLAR 2007

MEMORANDUM

This memorandum consists of 13 pages.


I.

н

QUESTION 1

1.1

1.1.1



1.1.2

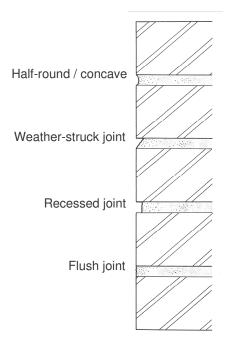
,		
N		
V	. /	
	V	

(4)

(4)

(4)

1.2


1.2.1	Sand Ceme Water	nt/lime	(3)
1.2.2	10 mr	n	(1)
1.2.3			
	(a) (b) (c) (d)	Must be workable Have a good bond Must be durable and resistant to frost and chemical attacks, Have sufficient strength for the purpose for which it is required.	(2)

(Any two)

(2)

1.2.4

(Any two of the above)

1.2.5	Mortar is used to join bricks of a wall into one solid mass, thus (1) making the wall strong enough to stand upright.		
1.2.6	Brickforce	(1)	
1.2.7			
	 (a) Soil structure (b) Location of openings (c) Location of joints and corners (Any one of the above) 	(1)	
1.3.1	 (a) Profiles and Building line (b) (Marking gauge, spirit level, line blocks and building line) 	(1)	
1.3.2	Galvanised straps or long nails $$ are knocked into the timber frame. $$ Make sure that the doorframe is in position, $$ level and plumb by using wooden stays, spirit level. $$	(4)	

1.3

1.4

1.4.1

- (a) Scaffolds should be inspected regularly
- (b) Standards should rest on solid surface or base
- (c) Platforms should be closely boarded.
- (d) Toe-boards must be provided on all platforms higher that 2 m.
- (e) Guard rails must be set at least 0.9m above the platform,
- (f) Ladders must be of sound construction and have no defects or missing rungs.

(Any two)

[30]

(5)

(1)

(1)

(1)

(1)

(2)

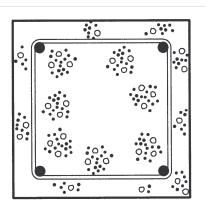
QUESTION 2

2.1

2.1.1

- (a) Formwork should be strong enough to support the load
- (b) Should not deflect under load including wet concrete
- (c) Must be accurately set out
- (d) Must have grout tight joints
- (e) Form sizes should be designed so that they are of maximum size, which can be easily handled.
- (f) Materials must be chosen so that it can be easily fixed, should be easily dismantled and assembled without any member being trapped.

(Any five)


2.1.2

- (a) Must be able to achieve tensile strength without undue stress
- (b) Must be of material that can be easily bent to any required shape (1)
- (c) Its surface must be capable of developing an adequate bond between concrete and reinforcement
- (d) Must be economical
- (e) Must have a similar coefficient of thermal expansion to prevent unwanted stress

(3)

5 NSC MEMORANDUM

2.2

Mark allocation:

- Column (1)
- Main bars (1)
- Binder (1)

2.3	To prevent rainwater from entering the building	(1)
2.4		

(a)	A - Head of the frame	(1)
(b)	B - Frame stile	(1)
(c)	C - Sill	(1)
(d)	D - Top rail	(1)
(e)	E - Sash stile	(1)
(f)	F - Bottom rail	(1)

2.5

2.5.1

Hollow core/Flush Door	Solid door
Softwood framework	Solid hardwood frame
Frabricated boards / masonite / veneer for panels	Solid materials for panels
Hollow core	Various materials can be used as panels

- 2.5.2 Weather resistant Security Privacy Durable Expensive
- 2.5.3 Light Provide privacy Provide sound insulation Cheap

(2)

(10)

(6)

(any two)

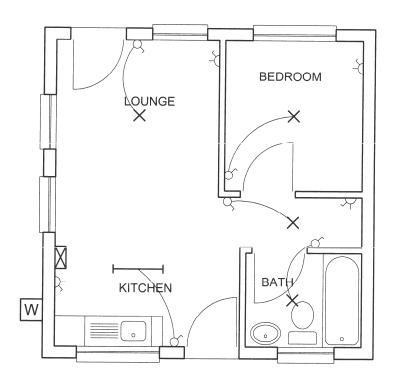
(2)

2.6

	(a) (b) (c) (d)	Screws have better grip than nails Screws do not split the timber when used at the end of the timber Screws can be easily removed Screws will not damage the work surface	(1) (1) (1) (1)
2.7			
	(a) (b) (c) (d)	Is a strongest joint for the drawer Does not pull apart easily Does not show from the front. The joint will not pull apart from the front as it can only be fitted in one direction (Any two)	(2)
2.8	 Alternate boa The outer lay	ade up of uneven layer of veneers. rds are laminated with the grain crossing each other at 90° ers of the board, the grain faces the same direction an be made waterproof	(4)
			[40]
QUESTI	ON 3		

3.1

3.2


3.1.1	100 mm or 110 mm	(1)
3.1.2	32 mm or 50 mm	(1)
3.1.3	For ventilation purposes	(1)
3.1.4	Prevents bad smell from entering the dwelling	(1)
3.1.5	Gully	(1)
3.1.6	Provides the access point to the drainage system for the purpose of cleansing, inspection and testing of drains	(1)
3.1.7	1:40	(1)

3.2.1 • A is a stop valve • B is a full way stop valve / gate valve

3.2.2

	(a) (b)	A is used in houses to control the flow of water in a pipe B is used on hot water pipes where the full bore is essential.	(1) (1)
3.2.3			
	(a) (b) (c)	Pipes connected the wrong way round There is lime deposits in the pipes restricting the flow of water Taps being closed too quickly	(1) (1) (1)
3.2.4	(a) (b) (c) (d) (e)	G = Gully IE = Inspection Eye MH = Manhole S = Sink SP = Soil Pipe	 (1) (1) (1) (1) (1)

3.3

Note: All symbols are worth half a mark each.

(8)

3.4 Wireman certificate

• To detect small imbalances between the earth and the supply, (2)

3.5

(1)

8 NSC

MEMORANDUM

indicating leakage of electricity down to earth

• To cut off electricity supply when an imbalance is detected to avoid electrocution or possible fire hazards.

[30]

(17)

QUESTION 4

4.1

(a) (b) (c) (d) (e)	b a c e d	(1) (1) (1) (1) (1)
	from soda, lime, silica, magnesia and aluminium. are heated in a furnace to a temperature of 1 490 ℃ to	(1) (1)
At this tempera	ture, the materials fuse together in a molten state. It is then produced by drawing, floating or rolling.	(1) (1)

4.3

4.2

(a)	Thermosetting plastics are brittle and cannot be softened	(2)
(b)	Thermoplastics can be softened and bent	(2)

4.4

Α	В	С	D
			Centre line
			2 x 6000 = 12000 √
			$2 \times 4000 = 8000$ V
			= 20000
			less 4 x 220 = 880 √
			Total = 19120 $$
1/	19.12		
	<u>2.60</u> √	49.71 √	Area for super structure = $49.71m^2$
1/	2.10		Area for the door opening = 2.100 x 0.900
	<u>0.90 √</u>	1.89 √	= <u>1.89m²</u>
1/	2.00		Area for the window opening = 2.00×1.20
	<u>1.20</u> √	2.40 √	= <u>2.400m²</u>
			Total area of superstructure $\sqrt{-\sqrt{-1}}$
			= 49.71 - (1.89 + 2.4)
			= <u>45.42m²</u> $$
2 /	45.42	4542	Number of bricks for the superstructure is

9 NSC

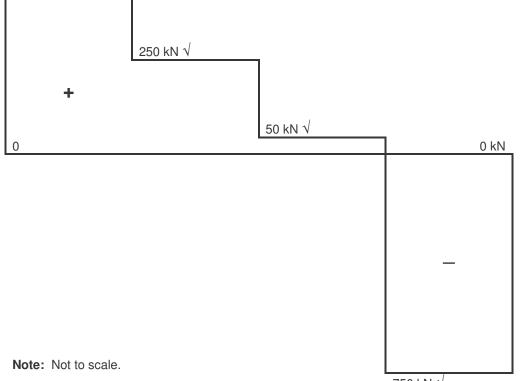
MEMORANDUM						
		50 √		4542 √		

[30]

(5)

QUESTION 5

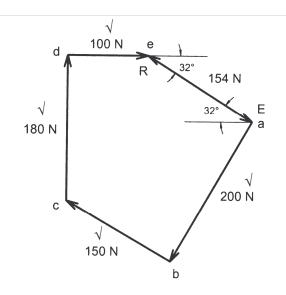
5.1


SF Calculations

SF at A = <u>450 kN</u> upwards	(1)
SF at B = 450 kN - 200 kN = 250 kN downwards	(1)
SF at C = 250 kN - 200 kN = <u>50 kN</u> downwards	(1)
SF at D = 50 kN - 800 kN = <u>-750 kN</u> downwards	(1)
SF at E = -750 kN + 750 kN = <u>0 kN</u> upwards	(1)

SF DIAGRAM

Scale: 1 mm = 10 kN
$$\sqrt{}$$



-750 kN √

5.2

(8)

Note: Not to scale.

 $R = 154 \text{ N at } 32^{\circ} \text{ North of East}$ $\int_{\sqrt{100}} E = 154 \text{ N at } 32^{\circ} \text{ South of West}$

Allow tolerance of 5N and 2° to either side

5.3		Area(A) E	Distance(D)	Area x Distance(AxD)	(12)
	Area 1 =	150 x 150 = 225000 √	75 √	225000 x 75 = 1687500 √	
	Area 2 = ¹ /	$\frac{1}{2} \times 300 \times 240 = 36000$	/ <u>230</u> √_	<u>36000 x 230 = 8280000</u> √	
	Total =	= <u>261000</u> \		= <u>9967500</u> √	
	Position of centroid from line A-B = $\frac{\text{Total (AxD)}}{\text{Total A}} \sqrt{\frac{1}{2}}$				
	= <u>9967500</u> \(\)				

11NSC MEMORANDUM $= 38,190 \text{ mm } \sqrt{\sqrt{3}}$

[30]

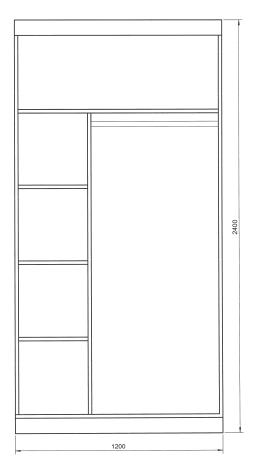
QUESTION SIX

6.1

Note: Not to scale.

Mark allocation:

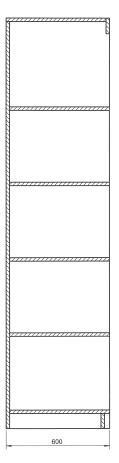
Insight:


 Positioning of Parts A and B without overlapping according to the isometric axis 	(6)
Line work: Outlines Projection lines 	(3) (3)
 Accuracy: Part A = 4 planes x 4 (2 for height and 2 for length) 	(16)

• Part B = 8 planes x 4 (2 for height and 2 for length)

(32)

TOTAL: 60 ÷ 3 = 20


6.2

12

NSC MEMORANDUM

FRONT VIEW

SECTION A-A

Note: Not to scale.

Mark allocation:

	TOTAL: 60 ÷ 3 = 20
 Accuracy: Front view (16 planes, 1 mark each) Section A-A (16 planes, 1 mark each) 	(16) (16)
Cutting planes:Hatching (9 planes, 1 mark each)	(9)
Dimensioning: • Length • Height • Depth	(2) (2) (2)
 Design: Layout and spacing Equally spacing of shelves Plinth, top rail and hanger 	(6) (4) (3)

Copyright reserved