WORK, ENERGY & POWER: WORKSHEETS

ACTIVITY 1

A worker pulls a crate of mass 20 kg from rest along a horizontal floor by applying a constant force of magnitude 80 N at an angle of 60° to the horizontal. A frictional force of magnitude 10 N acts on the crate whilst moving along the floor.

1.1 Draw a labelled free-body diagram to show ALL the forces acting on the crate during its motion.

on the crate	on why each of the	G	

starting							
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
			•••••				
			•••••				
•••••	•••••	•••••	•••••			•••••	•••••
	e WORK-EN it reaches p		HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
			HEOREM	to calculat	e the spee	d of the c	rate at the
1.5 The	worker nov	v applies	a force of				
1.5 The ANGLE to	worker now	v applies a	a force of	f the same	magnitude,	but at a	SMALLER
1.5 The ANGLE to How does	worker nov	v applies al, on the	a force of crate.	f the same	magnitude,	but at a	SMALLER

The diagram below, not drawn to scale, shows a vehicle with a mass of 1 500 kg starting from rest at point **A** at the bottom of a rough incline. Point **B** is 200 m vertically above the horizontal.

The total work done by force F that moves the vehicle from point A to point B in 90 s is $4,80 \times 106 \text{ J}$.

2.1 Define the term non-conservative force.	(2)
2.2 Is force F a conservative force? Choose from: YES or NO.	(1)
2.3 Calculate the average power generated by force F.	(3)
The speed of the vehicle when it reaches point B is 25 m·s-1.	

2.4 State the work-energ	y theorem in words.	(2)
	es to calculate the total work done on the ve	
	es to calculate the total work done on the ve	hicle by the (5)
2.5 Use energy principl frictional forces.	es to calculate the total work done on the ve	
frictional forces.	es to calculate the total work done on the ve	(5)
frictional forces.		(5)

A rescue helicopter is stationary (hovers) above a soldier. The soldier of mass 80 kg is lifted vertically upwards through a height of 20 m by a cable at a CONSTANT SPEED of 4 $\rm m\cdot s^{-1}$. The tension in the cable is 960 N. Assume that there is no sideways motion during the lift. Air friction is not to be ignored.

3.1	State the work-energy theorem in words. (2)

3.2 Draw a labelled free-body diagram showing ALL the forces acting on the soldier while being lifted upwards.(3)

Use the WORK-ENERGY THEOREM to calculate the work done on dier by friction after moving through the height of 20 m.	the (5)
dier by friction after moving through the height of 20 m.	(5)

A 3 kg block slides at a constant velocity of 7 m·s⁻¹ along a horizontal surface. It then strikes a rough surface, causing it to experience a constant frictional force of 30 N. The block slides 2 m under the influence of this frictional force before it moves up a frictionless ramp inclined at an angle of 20° to the horizontal, as shown in the diagram below.

The block moves a distance d up the ramp, before it comes to rest.

4.1 Show by calculation that the speed of the block at the bottom of the ramp is 3 m·s-1. (5)

4.2 direct	Draw a free-body diagram to show all the forces acting on the block in a tion parallel to the incline, whilst the block is sliding up the ramp.	(2)
4.3	Calculate the distance, d, the block slides up the ramp.	(5)

In the diagram below, a 2 kg block lying on a rough horizontal surface is connected to a 8 kg block by a light inextensible string passing over a light frictionless pulley.

Initially the blocks are HELD AT REST.

5.1 State the work-energy theorem in words.

When the blocks are released, the 8 kg block falls through a vertical distance	
5.2 Draw a labelled free-body diagram for the 8 kg block.	(2)

(2)

5.3 Calculate the	work done by the gravitation	al force on the 8 kg block.	(3)
	f kinetic friction between the 2 ffects of air resistance.	2 kg block and the horizontal s	surface is
	principles to calculate the solile still attached to the 2 kg b	peed of the 8 kg block when it	falls
, , ,	J .		(=)
			(5)