

DIRECTORATE SENIOR CURRICULUM MANAGEMENT (SEN-FET)

HOME SCHOOLING SELF-STUDY WORKSHEET ANSWER SHEET

	WELDING & METALWORK	GRADE		DATE	
SUBJECT					
	JOINING METHODS	TERM 1	(Please tick)	TERM 2	(Please tick)
TOPIC		REVISION		CONTENT	

QUESTION 1 JOINING METHODS (INSPECTION OF WELD)

1.1 Inspection during arc welding:

- Amount of penetration and fusion
- · Rate of electrode burning and progress of the weld
- The way the weld metal is flowing (no slag inclusion)
- The sound of the arc, indicating correct current and voltage for the particular weld ☐ (Any 3)

1.2 Causes of the following welding defects:

1.2.1 **Welding spatter:**

- Too high current
- Too long arc

- Not applying anti-spatter spray
- Electrode angle too small
- Welding speed too fast (Any 2)

1.2.2 **Incomplete penetration:**

- Too low current
- Too slow welding speed
- Electrode angle too small
- Poor joint preparation
- Insufficient root gap (Any 2)

1.3 Prevention of weld defects:

1.3.1 **Porosity:**

- Ensure that the surface is clean.
- Prevent atmospheric contamination.
- Use dry electrodes. (Any 1)

1.3.2 Slag inclusion:

- Remove slag from previous run before doing the next run.
- Ensure that the surface is clean.
- Use the correct current. (Any 1)

1.4 Nick-break test:

To determine the internal \square quality/defects \square of the weld metal.

1.5 Guided bend test:

• Lack of fusion of the base metal and weld metal.

• Incomplete penetration of the weld metal.

1.6 Free-bend test:

Ductility

1.7 Visual inspection process:

- Shape of profile
- Uniformity of the surface
- Overlap
- Undercutting
- Penetration bead
- Root groove (Any 3)

1.8 Liquid dye penetration test:

- Clean the surface tested.
- Spray the liquid dye penetrant onto the surface.
- Allow liquid dye to penetrate.
- · Remove excess dye with cleaner.
- Spray a developer onto the surface to bring out the colour.
- Areas where the dye has penetrated (defects) will show up clearly.

QUESTION 2 JOINING METHODS (STRESSES AND DISTORTION)

2.1 Distortion:

Weld distortion is the warping of the base metal □ caused by heat from the welding arc/flame. □

As the weld proceeds, \Box the surrounding areas expand and contract \Box at varied rates, which set up stresses \Box in the welded joint. These stresses remain when the weld has cooled \Box and are known as residual stresses.

2.3 Distortion and residual stress:

- If expansion, which occurs when a metal is heated, is resisted then deformation occurs.
- When contraction, which occurs on cooling, is resisted then a stress will be applied.
- If the applied stress causes movement, then distortion occurs.
- If the applied stress does not cause movement, then there will be residual stress in the welded joint. (Any 3)

2.4 Methods to reduce distortion:

- Do not overweld.
- · Apply intermittent welding.
- Place welds near the neutral axis.
- Use as few passes as possible.
- Use back-step welding.
- Anticipate the shrinkage forces.
- Plan the welding sequence.
- Use strongbacks.
- Use clamps, jigs and fixtures. (Any 3)

2.5 Difference between cold working and hot working of steel:

Cold working is when deformation of steel takes place below \square the recrystallisation temperature \square of the steel.
Hot working is when deformation of steel takes place above □ the recrystallisation temperature □ of the steel

2.6 Factors that affect the grain size of steel:

- The prior amount of cold work.
- The temperature and time of the annealing process.
- The composition.
- The melting point. (Any 2)