

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS P3

= =

EXEMPLAR 2007

MEMORANDUM

This memorandum consists of 8 pages.

1

Please turn over

QUESTION ONE		
1.1.1	No. For any mutually exclusive events A and B, $P(A \cap B) = 0$. However, in this case $P(A \cap B) = 0,12$. Therefore the events A and B are not mutually exclusive.	✓ no ✓ motivation (2)
1.1.2	Yes. For events A and B to be independent, $P(A) \times P(B) = P(A \cap B)$. In this example, $P(A) \times P(B) = 0.2 \times 0.6$ = 0.12 $=P(A \cap B)$	✓yes ✓motivation (2)
1.2.1	a = 70 b = 90 c = 120 d = 250	$ \begin{array}{c} \checkmark a \\ \checkmark b \\ \checkmark c \\ \checkmark d \end{array} $ $ (4) $
1.2.2	P(person liked the programme) = $\frac{130}{250} = 0,52$. P(person is male) = $\frac{150}{250} = 0,6$ P(male person liked the programme) = $\frac{60}{250} = 0,24$.	 ✓ reading probabilities from table ✓ reading probability from table
	P(person liked the programme) \times P(person is male) = 0.52 \times 0.6 = 0.31	✓ calculation
	Since P(person liked the programme \times P(person is male) \neq P(male person liked the programme), preference for the programme is not independent of gender.	✓ conclusion (4)
		[12]

	MEMORANDUM	
QUE	STION 3	
3.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ for 15 ✓ for 10 ✓ for 8 ✓ for 20 ✓ x position ✓ 40 - x ✓ 55 - x ✓ for 64
		(8)
3.2	10 learners	✓answer (1)
5.5	10+15 + x + 8 + 20 + 64 + 55 - x + 40 - x = 200 212 - x = 200 x = 12	✓ addition ✓ = 200 ✓ answer (3)
3.4	P(learner has registered for at least two subjects) = $\frac{15 + 20 + 8 + 12}{2}$	
	$= \frac{55}{200}$ =0,275	 ✓ addition of intersection values ✓ division to gain probability ✓ answer
		(4)
		[16]

OUF	MEMORANDUM STION 4		
QUESTION 4			
4.1	Fotal number of boys who play soccer = $\frac{20}{50} \times 1200 = 480$.	 ✓ correct proportion ✓ answer (2) 	
4.2 No. The survey used only 50 boys, there are 1200 boys at the school. The sample was a very small group and not necessarily representative of the majority of students.		✓No ✓✓Motivation (3)	
OUE	STION 5	[5]	
QUE	5110N 5		
5.1	manufacturer A: growth rate in sales = $\frac{5760 - 5600}{5} = 32$ units per month	✓ difference quotient✓ answer	
	manufacturer B: growth rate in sales = $\frac{4600 - 4200}{5} = 80$ units per month	✓ difference quotient✓ answer	
	Manufacturer B had a better growth rate in sales over the given period.	✓ conclusion (5)	
5.2.1	Manufacturer A	$\checkmark \checkmark$ answer (2)	
5.2.2	The scale on the <i>y</i> -axis is different for both graphs. Manufacturer A uses an interval of 50 units whilst Manufacturer B uses an interval of 200 units. As a result, the slope for Manufacturer A's graph is much steeper than the slope for Manufacturer B's graph.	\checkmark an explanation relating to the slopes of the graphs (2)	
		[9]	

QUE	STION 6	
6.1	Saras is incorrect because only figures ABCDEF and MPQRST are similar. The corresponding sides are in proportion $\left(\frac{AB}{MP} = \frac{BC}{PQ} = \frac{CB}{RQ} = \frac{DE}{RS} = \frac{EF}{ST} = \frac{FA}{TM} = \frac{2}{1}\right)$ The corresponding angles are also equal.	 ✓ No ✓ sides in proportional ✓ angles in proportion ✓ ABCDEF & MPQRST identified as being similar (4)
6.2.1		
	$\frac{NC}{NB} = \frac{CM}{MA}$ $\frac{NC}{11.25} = \frac{5}{15}$ $NC = 3.75$	$\checkmark \frac{NC}{NB} = \frac{CM}{MA}$ $\checkmark \frac{NC}{NB} = \frac{5}{15}$ $\checkmark \frac{NC}{11,25}$ $\checkmark NC = 3.75$ (4)
622	$\frac{MN}{M} = \frac{CM}{M}$	
0.2.2	$AB AC$ $\frac{MN}{25} = \frac{5}{20}$ $MN = 6,25 \text{ cm}$	$\checkmark \frac{MN}{AB} = \frac{CM}{AC}$ $\checkmark \frac{MN}{AB} = \frac{5}{20}$ $\checkmark \frac{MN}{25}$ $\checkmark MN = 6.25$
		(4)
6.2.3	$NC^{2} + MC^{2} = 5^{2} + (3,75)^{2}$ $NC^{2} + MC^{2} = 39,0625$ $MN^{2} = 39,0625$	✓ $NC^{2} + MC^{2} = 39,0625$ ✓ $MN^{2} = 39,0625$ ✓ Conclusion
	Now, $NC^2 + MC^2 = MN^2$	(3)
	Δ MNC is a right angled triangle with $M\hat{C}N = 90^{\circ}$	
		[15]

Mathematics/P3

7 NSC MEMORANDUM

	MEMORANDUM	
QUESTION 7		
7.1.1 In Δ 's AEC and CDB		$\checkmark \hat{A} = \hat{C}$
$\hat{A} = \hat{C}$ angles of an is	sosceles Δ ; AB = BC	\checkmark reasons $\checkmark \hat{\mathbf{F}} - \hat{\mathbf{D}} - 90^{\circ}$
$\hat{E} = \hat{D} = 90^{\circ}$ given		\checkmark reasons (1)
$\therefore \Delta \text{ AEC } \Delta \text{ CDB } (\angle; \angle; \angle)$		(4)
7.1.2 From 7.1.1 $\Delta \text{ AEC } \Delta \text{ CDB}$ $\frac{\text{AE}}{\text{DC}} = \frac{\text{CE}}{\text{BD}} \dots \text{ sides in properties}$ $\Rightarrow \text{ AE x BD} = \text{DC x CE}$	ortion	✓ $\Delta \text{ AEC}$ $\Delta \text{ CDB}$ ✓ $\frac{\text{AE}}{\text{DC}} = \frac{\text{CE}}{\text{BD}}$ ✓ sides in proportion
\rightarrow AE X BD = DC X CE		(3)
7.2.1 $\frac{AF}{AC} = \frac{AD}{AB} = \frac{2}{3}$ (Proportionality)	y Theorem; DF // BC)	$\checkmark \frac{AF}{AC} = \frac{AD}{AB}$ $\checkmark \frac{2}{3}$
		✓ reason (3)
722 In Λ 's ADF ABC		
$\hat{D}_{1} = \hat{B} \qquad \text{(Corresponding a})$ $\hat{F}_{1} = \hat{C} \qquad \text{(Corresponding a)}$ $\hat{A} \text{ is common}$ $\therefore \Delta \text{ADF} \Delta \text{ABC} (\angle \angle \angle \angle)$	angles, DF//BC) ngles, DF//BC)	$\checkmark \hat{D}_{1} = \hat{B}$ $\checkmark \text{reason}$ $\checkmark F_{1} = C$ $\checkmark \text{ reason}$ $\checkmark \hat{A} \text{ is common}$ $\checkmark \angle \angle \angle \angle$ (6)
7.2.3 from 7.2.2 $\frac{DF}{BC} = \frac{AD}{AB} = \frac{2}{3}$ (prop theorem) $\frac{8}{BC} = \frac{2}{3}$ (DF = EG = 24) BC = 12cm	orom) = 8 cm)	$\checkmark \checkmark \frac{AD}{AB} = \frac{2}{3}$ $\checkmark \frac{8}{BC} = \frac{2}{3}$ $\checkmark 2 \text{ BC} = 24$
DC = 120m		✓ BC = 12cm ✓ reason (6)
		[22]

8 NSC MEMORANDUM

QUESTION 8	\checkmark PQ = QY = XP
8.1 $PQ = QY = XP = 4$ (Q is midpoint of PY; Prop Theorem) 🗸 4
$\frac{PY}{XY} = \frac{8}{12} = \frac{2}{3}$	$\checkmark \frac{PX}{YX} = \frac{2}{3}$
	(3)
8.2 Area of ΔXQR	\sqrt{XQ}
Area of ΔXYR	\overline{XY}
$= \frac{XQ}{XY} \dots \text{(Triangles between the same parallel lines)}$	$\checkmark \frac{8}{12} = \frac{2}{3}$
$=\frac{8}{12}$	✓ Theorem (3)
$=\frac{2}{3}$	
9.2	$\sim \Delta XMZ \Delta XRZ$
8.5	$\checkmark \checkmark \overline{\Delta XRZ} \times \overline{\Delta XYZ}$
$\frac{\text{Area of } \Delta XMZ}{\text{Area of } \Delta XYZ}$	$\checkmark \checkmark (\underline{1})(\underline{1})$
$= \frac{\Delta XMZ}{\Delta XRZ} \times \frac{\Delta XRZ}{\Delta XRZ} $ (Triangle between)	(2)(2)
$\begin{array}{c} \Delta XRZ \Delta XYZ \\ (1)(1) 1 \end{array}$	$\checkmark \frac{1}{4}$
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4}$	(5)
	[11]