

Grade12 Mathematics: Memorandum Paper 2

4 sin
$$\theta + 7\cos \theta = 1 \checkmark (x - 4)$$

28 cos $\theta - 49 sin \theta = -56$
-28 cos $\theta - 16 sin \theta = -4$
 $\therefore -65 sin \theta = -60 \checkmark$
 $\therefore sin = \theta \frac{60}{65} \checkmark$
 $\therefore \theta = 67,38^{\circ} \checkmark$
or 180° - 67,38° = 112,62° \checkmark
 $\therefore \theta = 112,62^{\circ}$
OR
OA = $\sqrt{4^2 + 7^2} = \sqrt{65} \checkmark$
OA' = $\sqrt{(-8)^2 + 1^2} = \sqrt{65} \checkmark$
AA' = $\sqrt{(4 - (+8))^2} (7 - 1)^2$
 $= \sqrt{180} = 6\sqrt{5} \checkmark$
Using the cos rule:
 $(6\sqrt{5})^2 = (\sqrt{65})^2 + (\sqrt{65})^2 - 2.$
 $\sqrt{65} \sqrt{65} \cos \theta \checkmark$
180 = 130(1 - cos θ)
 $\therefore \frac{180}{130} - 1 = -\cos \theta$
 $\therefore \cos \theta = -\frac{5}{13} \checkmark$
 $\therefore \theta = 112,62^{\circ} \checkmark$
1.2.2 B' = (8 cos 112,62° - 14 sin 112,62°; 8 sin 112,62° + 14 cos 112,62) $\checkmark \checkmark$
 $= (-16; 2) \checkmark \checkmark$
1.3.1 Tanx = -0,3421 \checkmark
 $\therefore x = -18,89^{\circ} \checkmark$
1.3.2 Sinx = 0,500 \checkmark
 $\therefore x = 30^{\circ}$
1.4 $y = 4 sin5x \checkmark \checkmark$
1.5.3 Comparison of $y = 150 \text{ completing a 10 km rec}$
Finiting true (minutes) 3
1.5.3
Rumers completing a 10 km rec

28

44

57

72

112

 $4\cos\theta - 7\sin\theta = -8 \checkmark (\times 7)$

Copyright reserved

92

Exemplar

Appropriate scale
$$\checkmark$$

Correct drawing \checkmark
Correct values for the median etc $\checkmark \checkmark$
The values can be out by 1 unit on either
side. 5
2.1.1 Let the centre = $(a; b)$
 $a = 2 \checkmark$
 $(\cancel{M}) 2^2 \qquad y \qquad b^2 = r^2 \checkmark$
Sub in (2;0)
 $(\cancel{M}) 2^2 \qquad 0 \qquad b^2 = r^2 \checkmark$
 $\therefore b^2 = r^2 \checkmark$
Sub in (4; -6)
 $(\cancel{M}) 2^2 \qquad 6 \qquad b^2 = b^2 \checkmark$
 $\therefore 4 + 36 + 12b + b^2 = b^2 \checkmark$
 $\therefore 40 + 12b = 0$
 $\therefore b = -\frac{10}{3} \checkmark$
Centre = $\left(2; -\frac{10}{3}\right)^2$
 $(\cancel{P} 2^2 \qquad \left(y + \frac{10}{3}\right)^2 = 4 \checkmark$
 7
 $m_{MB} = \frac{3\frac{1}{3}}{-2-4} = -\frac{4}{3} \checkmark$
 $\therefore M_{tangent} = \frac{3}{4} \checkmark$
Tangent: $y = \frac{3}{4}x + c$
Sub in (4; -6)
 $-6 = \frac{3}{4}(4) + c \checkmark$
 $-9 = c$
Tangent: $y = \frac{3}{4}x - 9 \checkmark$
2.2.1 $y = 5 - 2x$
 $x^2 \qquad (\cancel{M}) 2x^2 \qquad 12x \qquad 65 \qquad 2x \qquad 20 = 0 \checkmark$
 $x^2 \qquad 2x \qquad 15 = 0 \checkmark$
 $x^2 \qquad 4x \qquad 3 = 0$
 $\therefore (\cancel{M} (3 \qquad x - 4) = 0 \checkmark$
 $\therefore x = 3 \qquad x = 1 \checkmark$
 $y \qquad 5 - 2(\cancel{Y} \qquad y \qquad x \qquad y \qquad y \qquad 5 - 2(\cancel$

$$AB = \sqrt{4+16}$$

$$AB = \sqrt{20}$$

$$AB = 2\sqrt{5} \checkmark$$
2.2.3
$$m_{BC} = \frac{1 \cdot 3}{3 \cdot 1} = \frac{4}{2} = -2 \checkmark$$

$$m_{perp} = \frac{1}{2} \checkmark$$
Midpoint of AB = $\left(\frac{1+3}{2}; \frac{3-1}{2}\right) = (2;1) \checkmark$
Perpendicular bisector: $y = \frac{1}{2}x + c$
Sub (2;1): $1 = \frac{1}{2}(2) + c \checkmark$
 $\therefore c = 0$
 $\therefore y = \frac{1}{2}x \checkmark$
5
2.2.4
The x-intercepts of the circle are found by:
 $x^2 = 12x - 20 = 0 \checkmark$
 $\therefore x = 10 \text{ or } x = 2 \checkmark$
 $\therefore x = 10 \text{ or } x = 2 \checkmark$
 $\therefore x = 10 \text{ or } x = 2 \checkmark$
The evalue of the centre = $6 \checkmark$
 $\therefore y = 3 \checkmark$
The centre of the circle = (6;3)
6
3.1.1
(5;1) $\checkmark \checkmark p$ is 1 unit from C to the line $x = 4$, so the point C' will be 1 unit from $x = 4$ on the other side i.e. 5. The y-value (q) remains the same. \checkmark
3
3.1.2
(12;4) $\checkmark \checkmark r$ is 3 units from C' to the line $x = 9$, so the point C' will be 3 units from $x = 9$ on the other side i.e. 12. The y-value (s) remains the same. \checkmark
3
3.1.3
A translation 10 units right. \checkmark Triangle ABC has remained in the same horizontal plane but has moved 10 units along. \checkmark
3
3.1.4
If point A (1;3) is reflected about the $x = 9$, it will become $A'' = (-9;3) \checkmark$ Th is is not the same result as above. \checkmark
3
3.2.1 If $A = (4;3)$ then $A' = (3;4) \checkmark \checkmark$ and $A'' = (-3;4) \checkmark$
 $A'' = (-3;4) \checkmark$
4
4.1.1
 $\frac{\sin 2 \cos c \cos \theta \theta \theta (2 \cos^2 - 1) \sin \theta \theta}{4 \cos^2 \theta - 1} \checkmark$
6

Copyright reserved

If $\theta = 60^{\circ}$ then $1 + 2\cos 2\theta$

 $=\sin\theta$ 🗸

4.1.2

4.1.3

4

5

2

3

2 2 1

2 1

2

$$\begin{aligned} &= \sin \theta \checkmark \\ & \text{If } \theta = 60^\circ \text{ then } 1+2\cos 2\theta = 0 \lor \text{ and the} \\ & \text{denominator will be zero which makes the} \\ & \text{identity underlined} \checkmark \\ & \text{AT} = 2\cos \psi + 0 \end{Bmatrix} \\ & \text{AT} = \frac{1}{2} \cos^2 \psi \checkmark \\ & \text{AT} = \frac{1}{2} \sin^2 \theta \lor \\ & \text{in } (180^\circ) (-\theta / \theta) \checkmark \\ & \frac{\text{AT}}{\sin \theta} = \frac{1}{\sin(180^\circ)} (-\theta / \theta) \checkmark \\ & \frac{\text{AT}}{\sin \theta} = \frac{1}{\sin(180^\circ)} (-\theta / \theta) \checkmark \\ & \text{AT} = \frac{1}{2} \sin^2 \theta \lor \\ & \text{in } (1 + \beta \theta) \checkmark \\ & \text{in } (-\theta / \theta) \land \\ & \text{in } (-\theta / \theta$$

4

identify undefined.
$$\checkmark$$

4.1.3 120° or 240° \checkmark
4.2 In \triangle TAB:
 $\triangle \hat{TB} = 180° - (\theta + \beta) \checkmark$
 $\frac{\Delta T}{\sin \theta} = \frac{x}{\sin(\theta^{0} + \beta)} \checkmark$
 $\therefore \Delta T = \frac{x \sin \theta}{\sin(\theta^{0} + \beta)} \checkmark$
In \triangle TAC:
TC = $\Delta T \sin \alpha \checkmark$
 \therefore TC = $\Delta T \sin \alpha \land$
 \therefore TC = $\frac{x \sin \sin \alpha \theta}{\sin(\theta^{0} + \beta)}$
5.1 $f()80 = 1,2 \cos^{0} + 6,66 \checkmark$
 $= 7,86$
 $0,86 \times 60 \text{minutes} = 51,6 \text{minutes} \checkmark$
Time for surrise = 7:52 which is the time
recorded in the table. \checkmark
5.2 $f(\phi^{0} = 1,2 \cos(60^{0} - 180^{0}) + 6,66 \checkmark$
 $= 6,06$
 $0,06 \times 60 \text{minutes} = 3,6 \text{minutes} \checkmark$
Time for surrise = 06:04.
Actual surrise is at 06:33.
Difference is about 29 minutes. \checkmark
5.3 Earliest = 17:44 = 17,733 \checkmark
Latest = 20:01 = 20,016 \checkmark
 $\therefore 20,016 - 17,733 = 2,283 \checkmark$
5.4 *a* is the amplitude of the cos graph which
will be half of the time between the earliest
and the latest sunset i.e. 2,283 + 2 = 1,142 \lor \checkmark
p represents a horizontal shift which has not
occurred therefore $p = 0 \checkmark$
q is the amount that the graph has been
shifted upwards and is calculated by : the
minimum value + the amplitude of the graph
 $= 17,733 + 1,142 = 18,874. \checkmark$
5.5 $g(285 = 1,142 \cos(285^{0} - 180^{0}) + 48,875 \checkmark$
 $= 18,58$
 $0,58 \times 60 \text{minutes} = 34,8 \text{minutes} \checkmark$
Time for sunset = 18:39
Actual sunset is at 18:57
Difference is about 22 minutes. \checkmark
5.6 $h(t) = 1,142 \cos x - 1,2 \cos x + 12,215$
 $h(t) = 2,342 \cos x + 12,215 \checkmark$
5.7 $a - 1^{st}$ and 360th day $\checkmark \checkmark$
5.8 Predicted:
 $h(f)^{5} = -2,342 \cos 75 + 12,215 \checkmark$
5.9 $(285 - 1,12,215 \checkmark$
5.0 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.1 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.2 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.3 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.4 $h(t)^{2} = 1,242 \cos 75 + 12,215 \checkmark$
5.5 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.6 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.7 $a - 1^{st}$ and 360th day $\checkmark \checkmark$
5.8 Predicted:
 $h(t)^{5} = 2,342 \cos 75 + 12,215 \checkmark$
5.9 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.0 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.12 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.2 $h(t)^{2} = 2,342 \cos 75 + 12,215 \checkmark$
5.3 $h(t)^{2} = 2,342 \cos 75$

Copyright reserved