Grade11 Mathematical Literacy: Memorandum Paper 2

1.1 R3 000 to pay for bicycle and franchise fee.
1.2 R3,50 for ice creams

R0,50 for spoon and serviettes
R0,05 franchise fee
R25 for block of ice. $\checkmark \checkmark$
1.3 R10,00 per ice cream. \checkmark Variable \checkmark
$1.4 \mathrm{R} 25+30(\mathrm{R} 3,50)+30(\mathrm{R} 0,50)+30(\mathrm{R} 0,50)$
$=\mathrm{R} 25+30(\mathrm{R} 4,50)$
$=$ R160 \checkmark
1.5 a R3 $000+8 \times(\mathrm{R} 25+30(\mathrm{R} 4,50)) \downarrow=$

R4 $280 \checkmark$
b \quad R3 $000+15 \times(\mathrm{R} 25+30(\mathrm{R} 4,50))$) $=$ R5 400 -
c R3000 $+30 \times(\mathrm{R} 25+30(\mathrm{R} 4,50)) \checkmark$ = R7 800
$1.6 \quad$ a $\quad 8$ days $\times 30$ ice-creams \times R10 \checkmark $=$ R2 400 v
b 15 days $\times 30$ ice-creams \times R10 $=$ R4 $500 \sim$
c 30 days $\times 30$ ice-creams \times R10 $=\mathrm{R} 9000 \checkmark$

6
1.7

Graph labels \checkmark
Expense graph $\downarrow \checkmark$
Income graph $\downarrow \checkmark$
Appropriate scale \checkmark
1.8.1 For 30 ice-creams per day: about 20 days \checkmark For 60 ice-creams per day: about 10 days \checkmark
1.8.2 30 ice-creams per day: after about 30 days 60 ice-creams per day: after about 18 days \checkmark
2.1 Scale of diagram: Using $1,8 \mathrm{~cm}$ represents 45 cm , you get a scale of 1:25
Dimensions of lid on the drawing: $1,1 \mathrm{~cm}$ by $0,8 \mathrm{~cm} \checkmark \checkmark$
Dimensions of lid: $27,5 \mathrm{~cm}$ by $20 \mathrm{~cm} \checkmark \checkmark$
2.2 External dimensions: $80 \mathrm{~cm} \times 46 \mathrm{~cm} \times 45 \mathrm{~cm}$

But $2 \times 8 \mathrm{~cm}=16 \mathrm{~cm}$ must be subtracted from each side \checkmark
Internal dimensions: $64 \mathrm{~cm} \times 30 \mathrm{~cm} \times 29 \mathrm{~cm}$
2.3 Let $\pi=3,14$
$\mathrm{Vol}=3,14 \times(3,5 \mathrm{~cm})^{2} \times 5,4 \mathrm{~cm} \checkmark \checkmark$
$=207,78 \mathrm{~cm}^{3} \checkmark$2

42
4.2 Some people did not fill in their gender. \checkmark 1
4.3 It appears as if there were a lot more malesbuying ice-creams than females whereas inreality there was a difference of only 4 . This impression is created by starting the horizontal axis at 67 and not at zero. \downarrow By
3.1 The earliest bus is at 06:10 \checkmark so he should leave his home not later than 05:55. $\checkmark \mathrm{He}$ takes 10 minutes to walk to the station so he will get there at about 06:05. \checkmark He will catch the bus at 06:10 and arrive at Parktown at 06:49. \checkmark He takes about 15 minutes to walk to his bicycle so he will arrive at about 07:04.
3.2 He gets on very near to the beginning of the bus route and gets off at Victoria/Oxford which means he is zone 4 which will cost him R8,30.
3.3 The last bus of the day is at 17:36. $\checkmark \mathrm{He}$
must pack away before 17:20 \checkmark so that he has at least 15 minutes to walk to the station. He will arrive at Southgate Centre at 18:25
\checkmark and he takes 10 minutes to walk home. This means he will arrive at about 18:35. 4

```
                                    44
```


4

[^0]\qquad
3

\checkmarky
2.4 A top view of the bottom of the cooler box with the block of ice in it would look like this:

The height of the cooler box where there is no ice is 30 cm . This means you can fit in
$(30 \mathrm{~cm} \div 5,4 \mathrm{~cm})=5,55$ tubs \checkmark
This means that there can be 5 layers of icecreams.
\therefore Number of ice-creams in cooler box where there is no ice $=26 \times 5=130$ tubs \checkmark

The height of the cooler box where there is ice is $30 \mathrm{~cm}-20 \mathrm{~cm}=10 \mathrm{~cm}$. This means you can fit in $(10 \mathrm{~cm} \div 5,4 \mathrm{~cm})=1,9$ tubs
This means that there can only be 1 layer on top of the ice.
\therefore Number of ice-creams in cooler box where there is ice $=6 \times 1=6$ tubs
where there is ice $=6 \times 1=6$ tubs
doing this the graph emphasises the difference between the males and females.
4.4 There are only 4 people in the sample who are older than 35 years of age. \checkmark This is too small a number in this age group to test the preference of flavours for the whole population of 35 years of age.
4.5 Gained: It is easy to compare the males and females when looking at a particular flavour. For example: it is easy to see that more males than females like Licorice flavoured ice-cream.
Lost: You cannot compare the males with the other males i.e. you can't see which of the flavours the males like best.

	$13-17$	$18-24$	$25-34$	$35-49$
Choc	20	34	6	3
Straw	6	14	5	1
$\checkmark \checkmark \checkmark \downarrow \downarrow$				

\checkmark labels on graph
$\checkmark \checkmark \checkmark$ graph correct
8
4.7 Advantage of "Answer by age" using percentage: You can compare the different flavours within an age group even although there are a different number of people in each age group i.e the 25-34 age group like strawberry the most out of all the agegroups.
Disadvantage: You can't compare within the same age group. \checkmark
Advantage of "Answer by age" using actual numbers: You can compare the different age groups. i.e you can see that strawberry is the most popular of all the age groups. Disadvantage: You can't compare within the same flavour as the number of participants in each age group differs.
4.8 Licorice: $(12 \div 149) \% \times 20=1,6 \checkmark$

Bubblegum: $(32 \div 149) \% \times 20 \approx 4 \checkmark$
Vanilla: $(16 \div 149) \% \times 20 \approx 2 \checkmark$
Stawberry: $(26 \div 149) \% \times 20 \approx 3 \checkmark$ Chocolate: $(63 \div 149) \% \times 20=8,5 \checkmark$ Because chocolate is the most popular flavour it would be sensible to rather buy 9 boxes of chocolate and only 1 box of licorice.
5.1 Number of kilograms of ice cream:
$45 \times 0,200 \mathrm{~kg}=9 \mathrm{~kg} \checkmark$
Number of kilograms of dry-ice:
$\frac{9}{4}+1 \frac{1}{2}=3 \frac{3}{4} \mathrm{~kg} \downarrow \checkmark$
He will need:
$3 \frac{3}{4} \mathrm{~kg} \times 2=7 \frac{1}{2}$ half-kilograms of dry-ice \downarrow
Thabo must buy 8 half-kilograms of dry-ice \checkmark
Number of kilograms of dry-ice:
$7 \div 2=3 \frac{1}{2} \mathrm{~kg} \checkmark$
Number of kilograms of food:
$\frac{\mathrm{x}}{5}+\frac{1}{2}=3 \frac{1}{2} \mathrm{~kg}$
$x=3 \times 5=15 \mathrm{~kg} \checkmark$
Number of ice creams:
$15 \mathrm{~kg} \div 0,2 \mathrm{~kg}=75$ ice creams \checkmark

[^0]: 5

