EASTERN CAPE

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICAL LITERACY - SECOND PAPER NOVEMBER 2009 MEMORANDUM

MARKS: 100
TIME: $\quad 2 ½$ hours

SYMBOL	EXPLANATION
\mathbf{M}	Method
MA	Method with Accuracy
$\mathbf{C A}$	Consistent Accuracy
\mathbf{A}	Accuracy
\mathbf{C}	Conversion
\mathbf{S}	Simplification
$\mathbf{R T} / \mathbf{R G}$	Reading from a table / graph
\mathbf{F}	Choosing the correct formula
$\mathbf{S F}$	Substitution in a formula
\mathbf{O}	Opinion
\mathbf{P}	Penalty: e.g. for: no units, incorrect rounding off etc.
\mathbf{R}	Rounding off

This memorandum consists of 7 pages.

QUESTION 1[23]

Ques 1.1	AS 11.1.1	Solution $\frac{R 249,56}{2}=R 124,78 \checkmark \checkmark$	Explanation (M) Method(1) (A) Accuracy (1)
1.2	11.1 .2	$\begin{aligned} & \mathrm{R} 87,60 \times 2 \vee \mathrm{M} \\ & =\mathrm{R} 175,20 \vee \mathrm{~A} \end{aligned}$	(M) Method(1) (A) Accuracy(1)
1.3	11.1.2	$\begin{aligned} & \text { R4859,73 }- \text { R3407,62 } \checkmark \mathrm{M} \\ & =1452,11 \checkmark \mathrm{~A} \\ & \text { R1452,11 } \times 12 \checkmark \mathrm{M} \\ & =\text { R17 425,32 } \checkmark \mathrm{A} \end{aligned}$	(M) Method(1) (A) Accuracy (1) (M) Method(1) (A) Accuracy (1)
1.4	11.1.1	$\begin{aligned} & \text { R3532,04 + R2182,00 + R4859,73 + R249,56 + } \\ & \text { R175,20 } \checkmark \text { MA (adding all the amounts) } \\ & =\text { R10 998,53 } \end{aligned}$	(MA) Method with Accuracy (2) (A) Accuracy (1)
1.5	11.1.1	Total Net income $=$ Total earnings - Total deductions $\begin{aligned} & =24664,14-10998,53 \checkmark \mathrm{M} \\ & =\mathrm{R} 13665,61 \checkmark \mathrm{~A} \end{aligned}$	(M) Method(1) (A) Accuracy(1)
1.6	11.1.2	$\begin{aligned} & \text { R20 044,14 }+1000+3407,62+124,78+87,60 \checkmark \checkmark \mathrm{MA} \\ & =\text { R24 } 664,14 \checkmark \mathrm{~A} \\ & \text { Agree with Mrs Ntaka. } \checkmark \mathrm{O} \\ & \text { The amount shown on her salary slip is not correct. } \checkmark \mathrm{J} \end{aligned}$	(M) Method with Accuracy (2) (A) Accuracy (1) (O) Opinion(1) (J) Justification (1)
1.7	11.1.3	$\begin{aligned} & \text { R20 044,14 }+(20044,14 \times 0,085) \vee \mathrm{MA} \\ & =\text { R20 044,14 }+1703,75 \\ & =\text { R21 } 747,89 \checkmark \mathrm{~A} \end{aligned}$	(M) Method with Accuracy (1) (A) Accuracy (1)
1.8	11.1.3	$\begin{aligned} & \frac{3532,04}{21044,14} \times 100 \checkmark \checkmark \mathrm{MA} \\ & =16,78 \% \checkmark \mathrm{~A} \end{aligned}$	(MA) Method with accuracy (2) (A)Accuracy (1)

QUESTION 2[13]

2.1 11.2.1 Annual fees $=$ R2 250×4 $=$ R9000 per yr $\checkmark \mathrm{M}$
(M) Method (1)

Increase in fees:2009 = R9000 +(10\% of 9000) $\checkmark \mathrm{M}$
(M) Method (1)
$=9000+900$
= R9 $900 \checkmark$ CA
Increase for 2010= R9 $900+$ (10\% of 9 900)
= R9 $900+990$
$=R 10890 \checkmark$ A
OR
$A=P(1+i)^{n} \checkmark F$
$=R 9000(1,1)^{2} \checkmark \checkmark$ SF
$=R 10890 \checkmark$
2.2 11.2.1 In 2010 projected income $=$ R10 $890 \times(90 \%$ of 450) $\checkmark \mathrm{M}$
$=$ R10 $890 \times 405 \checkmark$ CA
$=$ R4 $410450 \times 0,05 \checkmark \mathrm{M}$
$=$ R220 522,50 $\checkmark \mathrm{A}$
(M) Method(1)
(CA) Consistent
Accuracy(1)
(M) Method (1)
(A) Accuracy (1)
$2.3 \quad$ 11.2.1 $A=P(1+i)^{n} \checkmark F$
$=25000(1,08)^{3} \checkmark \checkmark \checkmark$ SF
$=$ R31 492,80 \checkmark A
= R31 500 (nearest hundred rand)

OR

$$
\begin{aligned}
2008 & =(25000 \times 1,08) \checkmark \mathrm{SF}=\mathrm{R} 27000 \checkmark \mathrm{MA} \\
2009 & =(27000 \times 1,08)=\mathrm{R} 29160 \checkmark \mathrm{MA} \\
2010 & =(29160 \times 1,08)=\mathrm{R} 31492,80 \checkmark \mathrm{~A} \\
& =\text { R31 493 } \checkmark \mathrm{R} \\
& =\text { R31 500 }
\end{aligned}
$$

(F) Choosing formula(1)
(SF) Substituting into the formula (3)
(A) Accuracy(1)
(SF)
Substitution(1)
(MA) Method with accuracy(2)
(A) Accuracy (1)
(R) Rounding(1)

QUESTION 3[36]

3.1 11.3.1 $A=5027 \mathrm{~m}^{2}$
$L=\frac{5027}{55} \checkmark \checkmark M A$
$=91,4 \mathrm{~m} \checkmark \mathrm{~A}$
3.2 11.3.1 Length $=91,4 \mathrm{~m}$

Centre Line $=\frac{91,4}{2} \checkmark \mathrm{M}$
$=45,7 \mathrm{~m} \checkmark \mathrm{~A}$
3.3.1 11.3.3 Length $=91,4+(2 \times 5)$
$=91,4+10 \checkmark \mathrm{MA}$
$=101,4 \mathrm{~m} \checkmark \mathrm{~A}$
Breadth $=55+(2 \times 4)$
$=55+8 \vee \mathrm{MA}$
$=63 \mathrm{~m} \checkmark \mathrm{~A}$
3.3.2 11.3.3

$101,4 \mathrm{~mm} \checkmark \checkmark$
3.3.3 11.3.1 $\quad \mathrm{P}=2(1+b)$
$=2(101,4+63) \checkmark \mathrm{M}$
$=2(164,4)$
= 328,8
$=329 \mathrm{~m} \checkmark \mathrm{~A}$
(M) Method(1)
(A) Accuracy (1)
3.4.1 11.3.1 Area of the larger rectangle - Area of smaller rectangle $\checkmark \mathrm{MA}$
$(101,4 \times 63)-(91,4 \times 55) \vee \mathrm{CA}$
6388,2 - 5027
$=1361,2 \checkmark \mathrm{~A}$
$=1362 \mathrm{~m} \checkmark \mathrm{R}$
(MA) Method with Accuracy (1)
(CA) Consistent Accuracy (1)
(A) Accuracy (1)
(R) Rounding (1)
3.4.2 11.3.3 To make it easier for players and umpires to distinguish
(O) Opinion(1) sections on the field. \checkmark O
OR
Any other logical answer.
3.4.3 11.3.3 Yes. $\checkmark \mathrm{O}$
(O) Opinion(1)
The sand-based surface would not require watering like the water-based surface. The school would therefore save on water. \checkmark J
(J) Justification (1)
3.5.1 11.3.1 $\mathrm{C}=2 \pi r$
$\mathrm{C}=\frac{2 \times 3,14 \times 14,63}{2} \checkmark \mathrm{MA}$
$C=3,14 \times 14,63 \checkmark C A$
$\mathrm{C}=45,9382 \mathrm{~m}$
$=45,94 \mathrm{~m} \checkmark \mathrm{~A}$
(MA) Method with Accuracy (1)
(CA) Consistent
Accuracy (1)
(A) Accuracy (1)
3.5.2 11.3.1 $\quad C_{\text {larger semi-circle }}=61,64 \checkmark \mathrm{M}$
(M) Method(1)
$r=\frac{61,64}{3,14} \checkmark \mathrm{MA}$
$=19,63 \mathrm{~m} \checkmark \mathrm{~A}$
(MA) Method with
Accuracy (1)
(A) Accuracy (1)
3.6 11.3.1 (Perimeter of field + Three lines across the field +2 semi-circles) $\times 0,1 \mathrm{~m} \checkmark \mathrm{M}$
(M) Method(1)
(SF)
$2(91,4+55) \checkmark S F+3(55) \checkmark S F+2(45,94) \times 0,1 \checkmark$ SF $54,968 \mathrm{~m}^{2} \checkmark \mathrm{CA}$
$55 \mathrm{~m}^{2}$ (Rounded off) $\checkmark R$
$\begin{array}{cl}3.7 \quad \text { 11.3.1 } & \frac{55}{23}=2,39 \checkmark \mathrm{MA} \\ & =3 \text { litres } \checkmark \mathrm{A}\end{array}$
$=3$ litres \checkmark A

Substitution(3)
(CA) Consistent
Accuracy(1)
(R) Rounding(1)
(MA) Method with Accuracy(1)
(A) Accuracy (1)
[36]

QUESTION 4[18]

4.1 11.4.3 Mathematics $=$

$$
\begin{aligned}
& \frac{54+57+59+55+56+61+63+54+56+62)}{10} \\
& =\frac{577}{10} \\
& =57,7 \% \checkmark \mathrm{MA}
\end{aligned}
$$

$$
\text { Math Lit }=\frac{67+63+61+69+66+65+64+69+70+62}{10}
$$

$$
=\frac{656}{10}
$$

$$
=65,6 \% \checkmark \mathrm{MA}
$$

The Mathematical Literacy mean is better. $\checkmark \mathrm{O} \quad$ (O) Opinion(1)
4.2.1 11.4.3 Median Math:
$54545556565759616263 \checkmark \mathrm{M}$
$\frac{56+57}{2} \checkmark \mathrm{MA}$
$=56,5 \checkmark \mathrm{~A}$
Median Math Lit:
$61626364 \underline{6566} 67696970$
$\frac{65+66}{2} \checkmark \mathrm{MA}$
(M) Method or arranging for both sets of data(1) (MA) Method with Accuracy(1)
(A) Accuracy (1) (MA) Method with Accuracy(1)
(A) Accuracy (1)
4.2.2 11.4.3 Mode: Math $=54 \checkmark \mathrm{~A}$
(A) Accuracy (1)

Mode: Math Lit $=69 \checkmark \mathrm{~A}$
(A) Accuracy (1)
4.3 11.4.3 Mathematical Literacy. $\checkmark \mathrm{O}$

The Averages, medians and modes of Mathematical Literacy are higher than that of Mathematics. $\checkmark J$
$4.4 \quad 11.4 .3 \quad 54545556565759616263$
Lower quartile $=55 \checkmark$ MA
Upper quartile $=61 \checkmark \mathrm{MA}$
(O) Opinion(1)
(J) Justification (1)
(MA) Method with Accuracy(2)
4.5.1 11.4.3 30\%

Accuracy (1)
4.5.2 11.4.3 F; G; J

Accuracy (3)

QUESTION 5[10]

5.1 11.4.2 Seven wickets $\checkmark A$
5.2 11.4.2 The $10^{\text {th }}$ over $\checkmark \mathrm{A}$
$5.3 \quad$ 11.4.1 South Africa $\checkmark \mathrm{A}$ 8 wickets were lost $\checkmark A$
$5.4 \quad$ 11.4.1 Pakistan. $\checkmark \mathrm{A}$
They lost fewer wickets and the graph shows that they scored more runs. \checkmark J
$5.5 \quad 11.4 .1 \quad 40$ overs in total $\checkmark \mathrm{A}$
5.6 11.4.1 \quad Average run rate $=\frac{\text { runs }}{\text { overs }}$
$=\frac{145}{20} \checkmark \mathrm{MA}$
$=7,25$ runs per over $\checkmark \mathrm{A}$
(A) Accuracy (1)
(A) Accuracy (1)
(A) Accuracy (2)
(A) Accuracy (1)
(J) Justification (1)
(A) Accuracy (1)
(MA) Method with Accuracy(1)
(A) Accuracy (1)
[10]
TOTAL: 100

