WORK, ENERGY & POWER

IMPORTANT TERMS & DEFINITIONS

The work done on an	The work done on an object by a constant force F, where
force F	of the displacement and θ the angle between the force and
	the displacement
$\mathbf{W} = \mathbf{F} \Delta \mathbf{x} \mathbf{cos} \boldsymbol{\theta}$	
Work-energy	The net/total work done on an object is equal to the change in the
Theorem	object's kinetic energy OR the work done on an object by a
	resultant/net force is equal to the change in the
$\mathbf{W}_{net} = \Delta \mathbf{K} \text{ or } \mathbf{W}_{net} = \Delta \mathbf{E}_{\mathbf{k}}$	object's kinetic energy.
Conservative force	A force for which the work done in moving an object between
	two points is independent of the path taken.
Non-conservative force	A force for which the work done in moving an object
$\mathbf{W}_{\mathbf{nc}} = \Delta \mathbf{K} + \Delta \mathbf{U} \text{ or }$	between two points depends on the path taken.
$\mathbf{W}_{\mathbf{nc}} = \Delta \mathbf{E}_{\mathbf{k}} + \Delta \mathbf{E}_{\mathbf{p}}$	
The principle of	The total mechanical energy (sum of gravitational potential energy
conservation of	and kinetic energy) in an isolated system remains
mechanical energy	constant.
$(\mathbf{E}_{\mathbf{k}} + \mathbf{E}_{\mathbf{p}})_{\text{top/A}} = (\mathbf{E}_{\mathbf{k}} + \mathbf{E}_{\mathbf{p}})_{\text{bottom/B}}$	
Power	The rate at which work is done or energy is expended.
$\mathbf{P} = \frac{\mathbf{W}}{\Delta t}$	

- Work is a form of <u>energy</u>. Work is done by a force F on mass m when the force and the displacement Δx are parallel. In general: W = F $\Delta x \cos \theta$, and work is a SCALAR.
- 4 Isolated system is a system on which no external forces acting on an object (i.e friction)

FORMULAE TABLES:

FORCE

F _{net} = ma	p = mv
$f_s^{max} = \mu_s N$	$f_k = \mu_k N$
$F_{net}\Delta t = \Delta p$ $\Delta p = mv_f - mv_i$	w = mg
$F = \frac{\overline{Gm_1m_2}}{d^2}$	$g = G \frac{M}{d^2}$

WORK, ENERGY AND POWER

$W = F\Delta x \cos \theta$	$U = mgh$ or/of $E_P = mgh$
$K = 1 mv^2 or/of E_{L} = 1 mv^2$	$W_{net} = \Delta K \text{ or/of } W_{net} = \Delta E_k$
2 2	$\Delta \mathbf{K} = \mathbf{K}_{\mathrm{f}} - \mathbf{K}_{\mathrm{i}} \qquad \text{or/of } \Delta \mathbf{E}_{\mathrm{k}} = \mathbf{E}_{\mathrm{kf}} - \mathbf{E}_{\mathrm{ki}}$
$W_{nc} = \Delta K + \Delta U \text{ or/of } W_{nc} = \Delta E_k + \Delta E_p$	$P = \frac{VV}{\Delta t}$
$P_{ave} = F v_{ave}$	

LEARNER WORKED ACTIVITIES & EXAMPLES Work (W) or net work (Wnet) done can be calculated or applied by considering an object that moves: horizontally vertically at an incline, under the influence of one or more forces Key Concepts: Work. Free-body diagrams. Work - Energy theorem. Conservative and non-conservative forces. Principle of conservation of mechanical energy

6. Power

WORKED EXAMPLE 1

A constant force **F**, applied at an angle of 20° above the horizontal, pulls a 200 kg block, over a distance of 3 m, on a rough, horizontal floor as shown in the diagram below.

The coefficient of kinetic friction, μ_k , between the floor surface and the block is 0,2.

		[15]
1.5	Calculate the magnitude of the force F that has to be applied so that the net work done by all forces on the block is zero.	(4)
1.4	Show that the work done by the kinetic frictional force (W_{fk}) on the block can be written as $W_{fk} = (-1\ 176 + 0,205\ F)$ J.	(4)
1.3	Draw a free-body diagram indicating ALL the forces acting on the block while it is being pulled.	(4)
1.2	State the work-energy theorem in words.	(2)
1.1	Give a reason why the coefficient of kinetic friction has no units.	(1)

The diagram below shows a boy skateboarding on a ramp which is inclined at 20° to the horizontal. A constant frictional force of 50 N acts on the skateboard as it moves from **P** to **Q**. Consider the boy and the skateboard as a single unit of mass 60 kg.

Ignore the effects of air friction.

2.1 Draw a labelled free-body diagram, showing ALL the forces acting on the boy-skateboard unit while moving down the ramp from **P** to **Q**.

Points **P** and **Q** on the ramp are 25 m apart. The skateboarder passes point **P** at a speed v_i and passes point **Q** at a speed of 15 m·s⁻¹.

Ignore rotational effects due to the wheels of the skateboard.

(3)

2.2 State the work-energy theorem in words. (2)
2.3 Use energy principles to calculate the speed v_i of the skateboarder at point P. (5)
2.4 Calculate the average power dissipated by the skateboarder to overcome friction

SOLUTION

between **P** and **Q**.

2.1

2.2 The net/total work done on an object equals the change in the object's kinetic energy. $\checkmark \checkmark$

2.3 **OPTION 1**

 $W_{net} = \Delta E_K$ $f \Delta x \cos \theta + F_g \Delta x \cos \theta = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$

🖌 🗸 Any one

 $(50)(25\cos 180^{\circ})\checkmark + (60)(9,8) (25\cos 70^{\circ})\checkmark = \frac{1}{2}(60)(15^{2} - v_{i}^{2})\checkmark$ -1 250 + 5 027,696 = 6 750 - $30v_{i}^{2}$ $v_{i} = 9,95(4) \text{ m.s}^{-1}\checkmark$

OPTION 2

 $W_{nc} = \Delta E_{K} + \Delta E_{P}$ f $\Delta x \cos \theta = \frac{1}{2} (mv_{f}^{2} - mv_{i}^{2}) + (mgh_{Q} - mgh_{P})$ E_{mechP} + E_{mechQ} + W_{nc} = 0

✓ Any one/*Enige een*

 $(50)(25\cos 180^{\circ}) \checkmark = \frac{1}{2}(60)(15^{2} - v_{i}^{2}) \checkmark + (60)(9,8)(-25\sin 20^{\circ}) \checkmark$ -1 250 = 6 750 - 30 v_{i}^{2} - 5 027,696 v_{i} = 9,95 m.s⁻¹ \checkmark

(5)

(4) **[14]**

2.4

$$P_{\text{ave/gemid}} = Fv_{\text{ave/gemid}} \checkmark$$
$$= 50 \checkmark (9,95+15)$$
$$= 623,75 \text{ W } \checkmark$$

(4) [**14]** 5

A load of mass 75 kg is initially at rest on the ground. It is then pulled vertically upwards at a constant acceleration of $0,65 \text{ m}\cdot\text{s}^{-2}$ by means of a light inextensible rope. Refer to the diagram below. Ignore air resistance, rotational effects and the mass of the rope.

	a height of 12 m.	(5) [13]
3.5	Use the work-energy theorem to calculate the speed of the load when it is at	
3.4	State the work-energy theorem in words.	(2)
3.3	Calculate the work done on the load by the gravitational force when the load has reached a height of 12 m.	(3)
3.2	Name the non-conservative force acting on the load.	(1)
3.1	Draw a labelled free-body diagram for the load while it moves upward.	(2)

A 3 kg trolley is at rest on a horizontal frictionless surface. A constant horizontal force of 10 N is applied to the trolley over a distance of 2,5 m.

When the force is removed at point **P**, the trolley moves a distance of 10 m up the incline until it reaches the maximum height at point **Q**. While the trolley moves up the incline, there is a constant frictional force of 2 N acting on it.

4.1	Write down the name of a non-conservative force acting on the trolley as it moves up the incline.	(1)
42	Draw a labelled free-body diagram showing all the forces acting on the trolley as it moves along the horizontal surface.	(3)
4.3	State the WORK-ENERGY THEOREM in words.	(2)
4.4	Use the work-energy theorem to calculate the speed of the trolley when it reach point ${f P}.$	es (4)
4.5	Calculate the height, <i>h</i> , that the trolley reaches at point Q .	(5) [15]
	SOLUTION	
4.1	Frictional force√	(1)
4.2	F_{\checkmark}	
	·	(3)
4.3	The net work done \checkmark on an object is equal to the change in kinetic energy \checkmark of the object.	(2)
4.4	$W_{net} = \Delta E_K \checkmark$ WF + Ww + WFN = ½ m(Vf ² - Vi ²) (10)(2,5)cos0° + 0 + 0 \checkmark = ½ (3)(Vf ² - 0 ²) \checkmark	(2)
	$v_f = 4,08 \text{ m} \cdot \text{s}^{-1} \checkmark$	(4)

4.5 **OPTION** 1

$$\begin{split} \overline{W_{nc}} &= \Delta \overline{E}_{p} + \Delta E_{k} \checkmark \\ f\Delta x \cos\theta &= (mgh_{f} - mgh_{i}) + (\frac{1}{2} mv_{f}^{2} - \frac{1}{2} mv_{i}^{2}) \\ (2)(10) \cos 180^{\circ} \checkmark &= (3)(9,8)h_{f} - 0 \checkmark + 0 - \frac{1}{2} (3)(4,08)^{2} \checkmark \\ \therefore h &= 0,17 m \checkmark \end{split}$$

OPTION 2

 $\overline{W_{net}} = \Delta E_k \checkmark$ mgsina $\Delta x \cos\theta + f \Delta x \cos\theta = \frac{1}{2} m(v_f^2 - v_i^2)$ (3)(9,8)($\frac{h}{10}$)(10)cos180° \sqrt{+} (2)(10)cos180° \sqrt{=} \frac{1}{2} (3)(0^2 - 4,08^2) \sqrt{}

∴h= 0,17 m ✓

(5) **[15]**

5.1 The diagram below shows a track, **ABC**. The curved section, **AB**, is frictionless. The rough horizontal section, **BC**, is 8 m long.

An object of mass 10 kg is released from point **A** which is 4 m above the ground. It slides down the track and comes to rest at point **C**.

- 5.1.1 State the *principle of conservation of mechanical energy* in words. (2)
 5.1.2 Is mechanical energy conserved as the object slides from A to C? Write only YES or NO. (1)
 5.1.3 Using ENERGY PRINCIPLES only, calculate the magnitude of the frictional force exerted on the object as it moves along BC. (6)
 SOLUTION
- 5.1.1 In an isolated/closed system, ✓ the total mechanical energy is conserved / remains constant ✓ (2)

5.1.2 No 🗸

(1)

OPTION 1	OPTION 2	
Along AB	Along AB	
$ E_{\text{mechanical at A}} = E_{\text{mechanical at B}} \\ (E_p + E_k)_A = (E_p + E_k)_B \\ (mgh + \frac{1}{2} \text{ mv}^2)_A = (mgh + \frac{1}{2} \text{ mv}^2)_B \\ (10)(9,8)(4) + 0 = 0 + \frac{1}{2} (10) \text{ vf}^2 \text{ v} \\ \text{vf} = 8,85 \text{ m} \cdot \text{s}^{-1} $	$W_{net} = \Delta E_k \checkmark$ $F_g \Delta h \cos \theta = \frac{1}{2} m(v_f^2 - v_i^2)$ $(10)(9,8)(4) \cos 0^\circ = \frac{1}{2} (10)(v_f^2 - 0) \checkmark$ $v_f = 8,85 \text{ m} \cdot \text{s}^{-1}$	(6)
Along BC/Langs BC	Along BC/Langs BC	. ,
$W_{net} = \Delta K \checkmark$ $f\Delta x \cos\theta = \Delta K$ $\frac{f(8)\cos 180^{\circ}}{f} \checkmark = \frac{1/2}{2} (10)(0 - 8,85^{2}) \checkmark$ $f = 48,95 N \checkmark$	$W_{nc} = \Delta K + \Delta U \checkmark$ f $\Delta x \cos \theta = \Delta K + \Delta U$ f(8) cos 180 $\checkmark = \frac{1}{2} (10)(0 - 8,85^2) + 0 \checkmark$ f = 48,95 N \checkmark (Accept/ Aanvaar 49 N)	

KEY POINTS TO NOTE

✓ Drawing free body diagrams

Avoid doing the following:

- Drawing a force diagram instead of a free-body digram.
- Drawing a free-body diagram for an object on an incline, when the object is on a horizontal surface and vice versa

[9]

- Resolving a force (the weight of an object on an incline, and a force acting at an angle) into its components and then including the force and the components in one diagram.
- Including a frictional force when friction should be ignored or omitting the frictional force when there is friction.
- Incorrect representation of the normal force when the object is on an inclined plane.
- Incorrect labelling of forces, and drawing straight lines without arrow-heads.

✓ Calculations/Problem solving

- Identify the correct initial and final velocities and do not swap these two velocities
- Understand the meaning of F & F_{net} and W & W_{net}. F_{net} is the sum of all the forces acting on an object. W_{net} is the sum of the work done by all the forces. F is a single force acting on an object, while W is work done by ONE force.
- Do not leave out the subscripts in the formulae, i.e F or W instead of Fnet or Wnet.
- Do not include a frictional force where friction should be ignored or leave out the frictional force where there is no friction.
- Remember that friction always acts in the opposite to the motion of an object.
- Make sure you understand the concept of negative work. Note that an object can be moving whilst a force is acting in the opposite direction and this force may not necessarily be frictional force.
- When a force does negative work on an object, energy is removed from the object and converted to other forms of energy such as heat. (The object becomes warmer)