

EC CURRICULUM: FET MATHEMATICS, MATHEMATICAL LITERACY AND TECHNICAL MATHEMATICS

TECHNICAL MATHEMATICS

GRADE 12 REVISION BOOKLET 1
OF 2020
(PAPER 1 QUESTIONS MEMORANDA)

A COLLECTION OF 2017 – 2019 NSC EXAM QUESTIONS AND MEMORANDA GROUPED ACCORDING TO TOPICS

- > # MATER THE BASICS FIRST!
- > HARDWORK NEVER KILLS!
- > PRACTICE MAKES PERFECT!

YES

YOU

CAN!

PLEASE READ:

Dear Grade 12 Technical Mathematics learner

INTRODUCTION

Your final school exam result in Technical Mathematics is extremely important. Good results in Technical Mathematics will surely open doors for you that will influence the quality of your future life. So, practice Technical Mathematics regularly, not only before tests and exams. Always tell yourself that "I Can Do TMAT!".

REQUIRED RESOURCES

- A Technical Mathematics textbook
- Workbooks/ Revision Material
- Past Examination Question Papers
- A scientific calculator, etc.

CONTENT CHECKLIST

Below is a checklist you should use to ensure that you have covered the content for Grade 12 Technical Mathematics in full:

Paper 1

Equations and inequalities

- Quadratic equations and inequalities
- Simultaneous equations
- Exponents and Surds
- Nature of Roots
- Logarithms
- Binary numbers
- Complex Numbers

Functions and graphs

- Linear, parabola; hyperbola;
- exponential and circle/ semi-circle
- finding equation when critical points are given
- horizontal and vertical translation and reflection about the *x* and *y* axis.
- interpret functions and graphs

Finance, Growth and Decay

- Simple and compound interest
- Different periods of compounding
- Analysis of different Loan options
- Nominal and effective interest rates
- Depreciation (reducing balance and straight line)

Differential Calculus and Integration

- Limits and average gradient
- First principles and differentiation rules
- Gradient at a point and tangents to curves
- Polynomials (Remainder and Factor theorems)
- Cubic functions
- Applications (maxima and minima; rate of change including Calculus of motion)
- Definite and indefinite integrals

Paper 2

Analytical Geometry

- Distance, midpoint, gradient, parallel and perpendicular lines
- Equation of a line, Co-linear points
- Angle of inclination
- Equation of a circle (centre at the origin **only!**)
- Equation of a tangent to a circle
- properties of geometric figures (triangles,
- quadrilaterals, etc.)
- Ellipse

Trigonometry

- Trigonometric definitions, Special angles
- Reduction formulae
- Identities and equations (simple Trig. equations)
- Solution of triangles and problems in 2D and 3D (sine-, cosine-, area rules)
- Trigonometric Functions and transformations

Euclidean geometry

Solving riders using properties of parallel lines, triangles and quadrilaterals

Circle geometry – apply theorems with converses in solving problems.

Ratio and proportion - apply the concept of:

- Midpoint theorem
- Proportionality
- Similarity

Mensuration

- Convert units, square and cubic units
- Volumes and Surface Areas of solids
- Area of irregular figures using the
- Mid-ordinate rule

Circles, Angles and Angular Movement

- Define Radian
- Convert between degrees and radians
- Central angles and arcs
- Area of Sector
- Height of segment
- Angular velocity
- Circumferential velocity

TIPS FOR SUCCESS:

Ensure that you are fully acquainted with your calculator. It will save you time in the examination. For instance, in converting radians to degrees, finance, trigonometry, etc.

Attend school every day and any extra tuition offered to you

Do Class and Homework every day.

Practice, Practice, Practice!

'YES YOU CAN!'

ENJOY TECHNICAL MATHEMATICS... BECAUSE YOU CAN!

ALGEBRA

2018 EXEMPLAR QUESTION 1

1.1 Given: f(x) = x(x+2)

Solve for x if:

1.1.1
$$f(x) = 0$$
 (2)

1.1.2 $f(x) \ge 0$ and then represent the solution on a number line. (4)

1.2 Solve for x if
$$5x^2 = 2 + x$$
 (rounded off to TWO decimal places) (4)

1.3 Solve algebraically for m and t simultaneously if: m-t-1=0 and $m^2+t^2=5$ (6)

1.4 The two diagrams below represent a metal rod with an initial length L₁ which is then stretched (elongated) to a length L₂.

The strain measure (ε) is defined as the ratio of elongation with respect to the original length and is given by the formula:

$$\varepsilon = \frac{L_2 - L_1}{L_1}$$

- 1.4.1 Express L₁ as the subject of the formula. (3)
- 1.4.2 Hence, or otherwise, calculate the value of L_1 if $\varepsilon = 0.8$ and $L_2 = 18$ cm. (2)
- 1.4.3 Convert the value obtained in QUESTION 1.4.2 to a binary number. (2)
- 1.5 Write the simplified value of 12×0,00361 in scientific notation without any rounding. (2)
 [25]

QUESTION 2

2.1 Given:
$$A = \frac{\sqrt{9-3p}}{p+1}$$

Determine the value(s) of p for which A will be:

Determine the value of
$$k$$
 for which the equation $x^2 - 4x + (k-1) = 0$ will have equal roots.

(4)

QUESTION 3

3.1 Simplify the following without the use of a calculator (show ALL steps):

$$3.1.1 \qquad \frac{5 \times 2^{n-1} - 2^n}{2^n} \tag{3}$$

$$3.1.2 \sqrt{64+16} - \sqrt{20}$$
 (4)

$$3.1.3 \quad \log_6 216 \times \log 0,001$$
 (4)

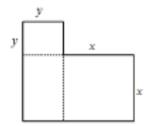
3.2 Solve for
$$x: \log(x-18) - \log x = 1$$
 (4)

3.3 Express the complex number
$$z = 3 + \sqrt{3}i$$
 in trigonometric (polar) form. (5)

3.4 Solve for
$$x$$
 and y if $x+yi=(3+5i)(2-7i)$ (5) [24]

NOV 2018

QUESTION 1


1.1 Solve for x:

1.1.1
$$-2x(x+a)(3-x)=0$$
 (3)

1.1.2
$$2x = 6 - x^2$$
 (correct to TWO decimal places) (4)

$$5x(x-3) \le 0$$
 and then represent the solution on a number line (3)

1.2 The total area represented by the L-shaped diagram below is 21 units². The equation y-2x=-7 represents the relationship of the sides of the two squares.

Solve for x and y (dimensions of the two squares) if:

$$y-2x=-7$$
 and $x^2+xy+y^2=21$ (7)

1.3 The formula below represents the moment of inertia (E), with mass (M) and length (L):

$$E = \frac{1}{12}ML^2$$

- 1.3.1 Make L the subject of the formula.
- 1.3.2 Calculate the value of L, if $E = 8.3 \times 10^{-2} \text{ kg.m}^2$ and $M = 1.6 \times 10^3 \text{ kg.}$ (2)
- 1.4 Express 36 as a binary number. (2)
 [23]

(2)

QUESTION 2

2.1 Given the roots: $x = \frac{-8 \pm \sqrt{q-3}}{2}$

Describe the nature of the roots if:

$$2.1.1 q = 5$$
 (1)

$$2.1.2 q = 3$$
 (1)

$$2.1.3 q < 0$$
 (1)

Determine for which value(s) of p will the equation $3x^2 + 7x = 2x + p$ have non-real roots.

(4) [7]

QUESTION 3

3.1 Simplify (showing ALL calculations) the following without the use of a calculator:

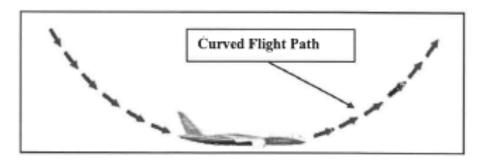
3.1.1
$$\left(2a^{\frac{7}{3}}\right)^3$$
 (2)

$$3.1.2 \log_p p + \log_m 1$$
 (2)

$$3.1.3 \qquad \frac{\sqrt{48} - \sqrt{12}}{2\sqrt{75}} \tag{3}$$

3.2 Solve for
$$x: \log_2(x+62) - \log_2 x = 5$$
 (4)

3.3 Express the complex number
$$z = -\sqrt{2} + \sqrt{2} i$$
 in the polar form $z = a \operatorname{cis} \theta$ (6)


3.4 Solve for
$$p$$
 and q if $p+qi=(2-3i)^2$. (4)

NOV 2019

QUESTION 1

1.1 The picture below shows the curved flight path of an aircraft. The flight path, as indicated by the arrows, is parabolic in shape and is defined by the equation:

$$p(x) = 2x^2 - \frac{8}{81}$$

1.1.1 Factorise
$$p(x)$$
 completely. (2)

1.1.2 Hence, solve for
$$x$$
 if $p(x) = 0$ (1)

1.2 Solve for x in EACH of the following:

1.2.1
$$(3x-5)(x+2)=-13$$
 where $x \in \{\text{Complex numbers}\}\$ (5)

1.2.2
$$(4-x)(x+3) < 0$$
 (3)

1.3 Solve for x and y if:

$$y = 3x - 8$$
 and $x^2 - xy + y^2 \equiv 39$ (6)

1.4 The following formula represents the relationship between the voltage, the current and the impedance in an alternating current circuit: V = I×Z

Where:

V = Voltage (in volts)

I = Current (in amperes)

Z = Impedance (in ohms)

- 1.4.1 Express I as the subject of the formula. (1)
- 1.4.2 Hence, determine in simplified form the value of I (in amperes) if:

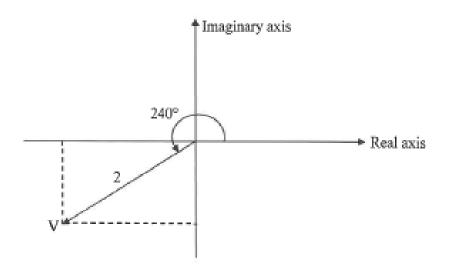
$$V = 7i$$
 and $Z = 3 - i$ (5)

QUESTION 2

2.1 Given:
$$G = \sqrt{\frac{p+1}{2p-1}}$$

Determine the value(s) of p such that G will be as follows:

Determine for which value(s) of
$$k$$
 the equation $x^2 - k + 4 = 5x$ will have real roots. (5)


OUESTION 3

3.1 Simplify:
$$\left(-2\sqrt[4]{a^3}\right)^8$$
(2)

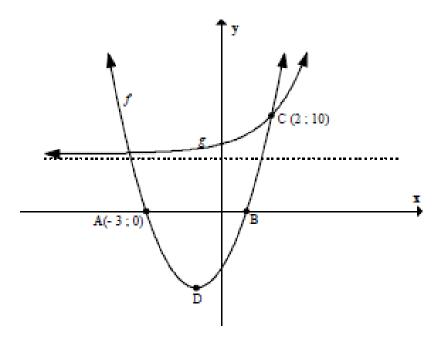
3.2 Solve for
$$x: \log_2(3x-2) + \log_2 0.5 = 3$$
 (4)

3.3 If
$$\log 2 = a$$
 and $\log 3 = b$, determine the value of $\log \sqrt{0.6}$ in terms of a and b . (5)

3.4 The voltage (V) in an alternating current circuit is represented by the Argand diagram below.

3.4.1 Use the Argand diagram above to write down the voltage in the form
$$V = r(\cos\theta + i\sin\theta)$$
(1)

3.4.2 Hence, or otherwise, express V in rectangular form. Leave your answer in simplified surd form. (3)


3.5 Determine the numerical values of
$$m$$
 and n if $m+ni=2(6-4i)-(-7i)$ (2)
[17]

8 | Page

FUNCTIONS AND GRAPHS

EXEMPLAR 2018 OUESTION 4

4.1 The graphs of the functions defined by $f(x) = 2x^2 + 4x - 6$ and $g(x) = k^x + 6$ are shown in the figure below. C(2;10) is a point of intersection of f and g. Points A(-3;0) and B are the x-intercepts and D is the turning point of f.

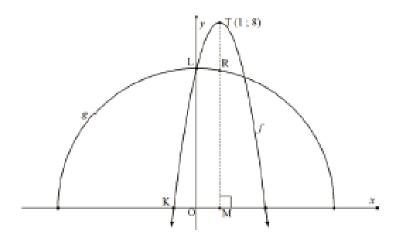
Determine:

4.1.3 The numerical value of
$$k$$
 (3)

4.1.5 The values of
$$x$$
 for which $f(x) \times g(x) < 0$ (2)

4.2 Given:
$$g(x) = \sqrt{4-x^2}$$
 and $h(x) = \frac{3}{x} + 1$

4.2.2 Determine the x-intercept of
$$h$$
. (2)


4.2.4 On the ANSWER SHEET provided, draw neat sketch graphs of g and h on the same set of axes. Clearly show ALL the asymptotes and the intercepts with the axes. (7)

4.2.5 Determine the range of g. (2)
[25]

NOV 2018 QUESTION 4

4.1 Given: $g(x) = 2^{-x} - 1$ and $h(x) = -\frac{6}{x} - 1$

- 4.1.1 Write down the equations of the asymptotes of h. (2)
- 4.1.2 Determine the coordinates of the x-intercept of h. (2)
- 4.1.3 Sketch the graphs of g and h on the same set of axes on the ANSWER SHEET provided. Clearly show the asymptotes and the intercepts with the axes.
- 4.1.4 Show that (-2; 3) is a point on the graph of g. (1)
- 4.1.5 Write down the range of g. (1)
- 4.1.6 Write down the domain of h. (1)
- Sketched below are the graphs defined by $f(x) = a(x+p)^2 + q$ and $g(x) = \sqrt{36-x^2}$ with T(1;8) the turning point of f. Line TM is drawn such that TM is perpendicular to the x-axis. Points L and K are the intercepts of f. Point L is a point of intersection of f and g. Point R lies on both line TM and the graph of g.

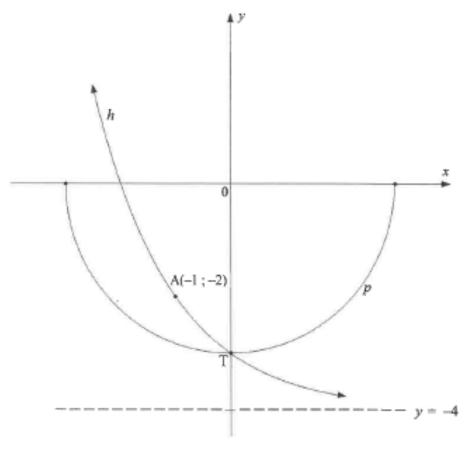
- 4.2.1 Write down the coordinates of M. (1)
- 4.2.2 Determine the length of TR (leave your answer in surd form). (3)
- 4.2.3 Show that (0; 6) are the coordinates of L. (1)
- 4.2.4 Hence, show that the graph of f is defined by f(x) = -2(x+1)(x-3). (4)
- 4.2.5 Hence, give the coordinates of K. (1)
- 4.2.6 Determine the values of x for which $f(x) \times g(x) > 0$ and x < 0 (2)

[24]

(5)

NOV 2019

OUESTION 4


- 4.1 Given functions k and q defined by k(x) = (x-5)(x+3) and $q(x) = \frac{12}{x} 2$ respectively.
 - 4.1.1 Write down the x-intercepts of k. (1)
 - 4.1.2 Determine the x-intercept of q. (2)
 - 4.1.3 Determine the coordinates of the turning point of k. (3)
 - 4.1.4 Write down the equations of the asymptotes of q. (2)
 - 4.1.5 Sketch the graphs of k and q on the same set of axes provided on the ANSWER SHEET. Clearly show the asymptotes, the intercepts with the axes, as well as the coordinates of any turning points. (7)

4.2 Sketched below are the graphs of p and h defined by $p(x) = -\sqrt{r^2 - x^2}$ and $h(x) = a^x + d$ respectively.

T is the point of intersection of p and h.

A(-1;-2) is a point on h.

The asymptote of h is indicated by the dotted line.

- 4.2.1 Write down the numerical value of d. (1)
- 4.2.2 Show that $h(x) = \left(\frac{1}{2}\right)^x 4$ (2)
- 4.2.3 Hence, determine the coordinates of T. (2)
- 4.2.4 Write down the range of p. (1)
- 4.2.5 Hence, determine the defining equation w(x) of function w, such that w is the reflection of p in the x-axis. (2)
- 4.2.6 Determine for which values of x will h(x) < p(x) (2)
 [25]

FINANCE, GROWTH AND DECAY

EXEMPLAR 2018

QUESTION 5

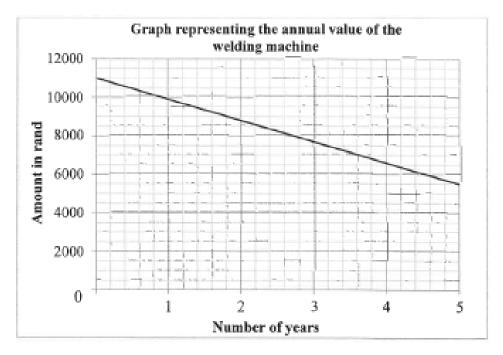
- 5.1 The nominal interest rate charged on an investment is 7,2 % compounded half yearly.
 Calculate the annual effective interest rate for the investment.
 - (3)
- 5.2 The air pressure of a punctured tyre deflated from 220 kPa to 70 kPa at a decreasing rate of 8% per minute. Determine (to the nearest minute) how long it took the tyre to deflate from 220 kPa to 70 kPa.
- (5)
- 5.3 Mrs Rethabile invested an amount of R150 000 to buy a drilling machine for her engineering company. Interest, compounded quarterly, is calculated at a rate of 10,5% p.a. for 5 years. At the end of the third year, Mrs Rethabile withdrew an amount of R30 000 from the investment account and then continued investing the balance for the remaining period.
 - Determine the value of the investment at the end of the investment period.

(6) [14]

NOV 2018

QUESTION 5

- 5.1 The annual effective interest rate charged by a financial institution is 6,7%.
 Calculate the nominal interest rate charged per annum if compounded monthly.
 (4)
- 5.2 A company bought a new 3D wheel-alignment machine for R240 000. The machine depreciated at a rate of 16% per annum to half its original value over a certain period.


- 5.2.1 Give the depreciated value of the machine at the end of the period. (1)
- 5.2.2 Determine how long it will take for the machine to depreciate to half its original value. Give your answer to the nearest year. (5)
- 5.3 Mr Bohlale invested R40 000 at a bank for 7 years. The interest rate for the first 4 years was 11,2% per annum, compounded quarterly. The interest rate then changed to 13% per annum compounded annually for the remaining years. Calculate the total amount of money that Mr Bohlale will receive at the end of the investment period.

(5) [15]

NOV 2019

QUESTION 5

5.1 A small engineering business purchased a new welding machine. The value of the welding machine depreciated annually over a period of 5 years, as shown in the graph below.

Use the graph above to answer the following questions:

- 5.1.1 Write down the value of the welding machine when it was new. (1)
- Calculate the annual constant percentage rate of depreciation.
- 5.2 A mechanic of Model X cars found a data sheet showing that 200 Model X cars had been serviced by the workshop during 2009. The annual compound growth rate of the number of Model X cars serviced by this workshop is 3,5% per annum.

Determine, showing ALL calculations, the year during which 273 Model X cars were serviced by this workshop. (5)

5.3 Anita planned to purchase a truck for her company in 8 years' time and decided to open an investment account to provide for the purchase of the truck. She deposited an initial amount of R293 000 into the account.

At the end of 2 years, Anita made a further deposit of R95 000 into the account. The interest rate for the first 4 years was 6,7% per annum, compounded quarterly, and for the remaining period the interest rate was 7,5% per annum, compounded monthly. The projected value of the truck at the end of 8 years will be R660 580.

Determine, showing ALL calculations, whether her investment would accumulate enough funds for her to purchase the truck at the end of the 8-year investment period.

(8) [17]

DIFFERENTIAL CALCULUS

EXEMPLAR 2018

QUESTION 6

- 6.1 Determine the average gradient of $f(x) = 2x^2 3$ between the points where x = -2 and x = 1.
- 6.2 Determine f'(x) from FIRST PRINCIPLES if f(x) = 4-3x. (5)
- 6.3 Determine $\frac{dy}{dx}$ if $y = \frac{2}{x^3} + \sqrt{x}$ (4)
- Determine the equation of the tangent to the curve defined by $g(x) = -x^2 x$ at the point where x = 2. (5)

QUESTION 7

Given: $f(x) = x^3 + 2x^2 - 7x + 4$

- 7.1 Show that (x-1) is a factor of f(x). (2)
- 7.2 Hence, or otherwise, find the x-intercepts of f. (3)
- 7.3 Determine the coordinates of the turning points of f. (5)
- 7.4 Sketch the graph of f on the ANSWER SHEET provided. Clearly show ALL the intercepts with the axes and the turning points. (4) [14]

QUESTION 8

8.1 An industrial open water tank, as shown in the picture below, has an inlet pipe and an outlet pipe. The depth of the water in the tank changes continually.

The equation $D(t) = 4 + 0.5t^2 - 0.25t^3$ gives the depth (in metres) of the water, where t represents the time (in hours) that has lapsed since the depth reading was taken at 09:00.

Determine:

- 8.1.1 The depth of the water in the tank at 11:00 (2)
- 8.1.2 The rate of change of the depth of the water in the tank at 12:00 (3)
- 8.2 The profit (in R1000s) yielded by a company, using a machine that produces bottle caps, is dependent on the average speed at which the machine runs.

The profit (P) is calculated using the formula:

$$P = -3v^2 + 30v$$

where v is the average speed (in kilometres per hour) and v > 0.

- 8.2.1 Calculate the average speed at which neither a profit, nor a loss is yielded. (3)
- 8.2.2 Determine at what average speed the machine should run so that the maximum profit is obtained. (3)
- 8.2.3 Hence, or otherwise, calculate the resulting maximum profit. (2)

[13]

NOV 2018

QUESTION 6

6.1 Determine
$$f'(x)$$
 using FIRST PRINCIPLES if $f(x) = 7x - 2$ (5)

6.2 Determine:

6.2.1
$$\frac{d}{dx}(\pi^2)$$
 (1)

6.2.2
$$D_x(x^4 - \sqrt[3]{x})$$
 (3)

6.2.3
$$\frac{dy}{dx}$$
 if $y = \frac{x^5 + 2}{x^2}$ (4)

6.3 The tangent to the curve of the function defined by $p(x) = x^3 + 1$ passes through point A(2; k).

6.3.1 Calculate the numerical value of
$$k$$
. (2)

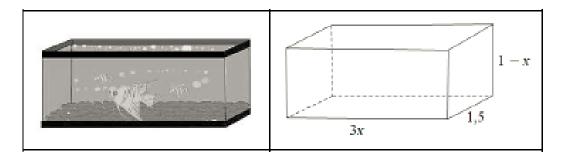
6.3.2 Determine
$$p'(x)$$
 (1)

6.3.3 Hence, determine the equation of the tangent to the curve of the function at point A. (3)

QUESTION 7

Given: f(x) = -x(x-3)(x-3)

7.2 Write down the y-intercept of
$$f$$
. (1)


7.3 Show that
$$f(x) = -x^3 + 6x^2 - 9x$$
 (2)

7.4 Determine the coordinates of the turning points of
$$f$$
. (5)

7.6 Determine the values of
$$x$$
 for which the graph of f is increasing. (2)
[16]

QUESTION 8

8.1 Mr Alexander built a rectangular fish tank. The length, breadth and height of the tank are 3x metres, 1,5 metres and (1-x) metres respectively, as shown in the diagram below.

- 8.1.1 Determine a formula for the volume of the tank in terms of x. (3)
- 8.1.2 Hence, determine the value of x that will maximise the volume of the tank. (3)
- 8.2 During an experiment, learners must record the velocity (v) of an electronic toy car over a distance (m), t seconds after the experiment has begun. The velocity of the electronic toy car is given by $v(t) = 8 + 4t t^2$

Determine:

- 8.2.1 The initial velocity of the toy car (1)
- 8.2.2 The velocity of the toy car when t = 0, 2 seconds (2)
- 8.2.3 The rate at which the velocity changes with respect to time when t=1,2 seconds (4) [13]

NOV 2019 OUESTION 6

6.1 Determine
$$f'(x)$$
 using FIRST PRINCIPLES if $f(x) = 5 - \frac{1}{2}x$ (5)

6.2 Determine the following:

6.2.1
$$f'(x)$$
 if $f(x) = a^3 - 0.5x^3 - x^{-1}$ (3)

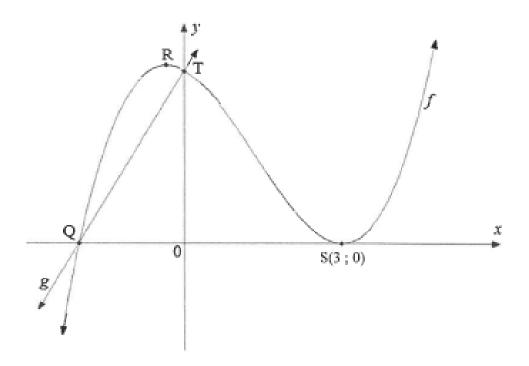
6.2.2
$$D_x[x(\sqrt{x}+2)]$$
 (4)

- 6.3 Given: $xy + 2x^3 = 7x^6$
 - 6.3.1 Make y the subject of the equation. (2)

6.3.2 Hence, determine
$$\frac{dy}{dx}$$
. (2)

6.4 A factory producing light bulbs makes a daily profit P(x) in rands for x number of light bulbs produced. The formula to calculate the factory's daily profit is given by P(x) = 0.8 x² - 200x, where x > 0.

Calculate:


- 6.4.1 The daily profit if 300 light bulbs are produced in one day (1)
- 6.4.2 The number of light bulbs produced that will yield a zero daily profit (2)
- 6.4.3 The rate of change of the daily profit with respect to the number of light bulbs produced, if 200 light bulbs are produced (3)

 [22]

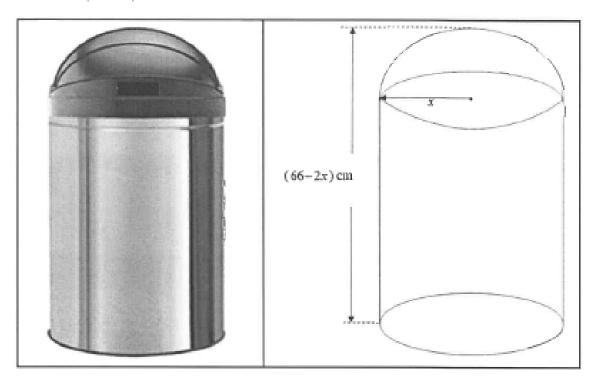
QUESTION 7

The sketch below represents the graphs of functions g and f defined by g(x) = 9x + 18 and $f(x) = x^3 + bx^2 + cx + d$ respectively.

S(3;0) and R are the turning points of f. T is the y-intercept of both f and g. Q is the x-intercept of both f and g.

7.2 Show that
$$b = -4$$
, $c = -3$ and $d = 18$. (3)

7.4 Determine:


7.4.1 The equation of the tangent to the curve of function
$$f$$
 at point R (1)

7.4.2 The values of
$$x$$
 for which $g(x) > 0$ (1)

7.4.3 The values of
$$x$$
 for which $f'(x) < 0$ (2) [15]

QUESTION 8

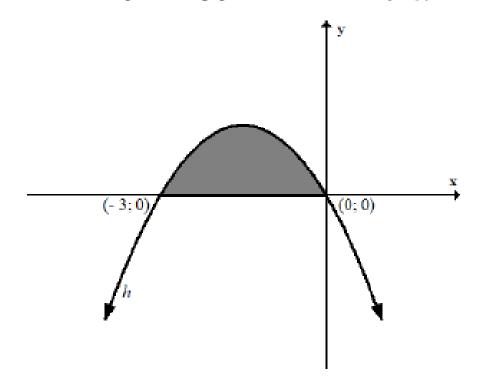
A container consists of a right cylindrical part and a hemispherical part at the top, as shown in the picture and diagram below. The radius of both shapes is x cm and the total height of the container is (66-2x) cm.

The following formulae may be used:

Volume of a right cylinder = $\pi r^2 h$

Volume of a sphere
$$=\frac{4}{3}\pi r^3$$

- 8.1 Write down, in terms of x, the height of the cylindrical part of the container. (1)
- 8.2 Show that the formula for the total volume (in cm³) of the container is given by:


$$V = 66\pi x^2 - \frac{7}{3}\pi x^3$$
(3)

- 8.3 Hence, calculate the value of x that will maximise the total volume of the container. (4)
- 8.4 Hence, determine the maximum total volume of the container. (2)
 [10]

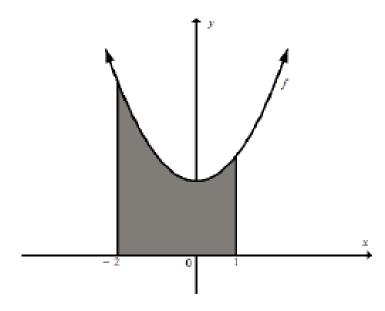
INTEGRATION EXEMPLAR 2018 QUESTION 9

9.1 Determine the following integral:
$$\int \left(x^{-4} + \frac{7}{x} - 1\right) dx$$
 (4)

9.2 The sketch below represents the graph of the function defined by $h(x) = -2x^2 - 6x$.

Determine the shaded area bounded by a curve defined by $h(x) = -2x^2 - 6x$ and the x-axis. (5)

NOV 2018


QUESTION 9

9.1 Determine the following integrals:

$$9.1.1 \qquad \int \left(-\frac{6}{x}\right) dx \tag{2}$$

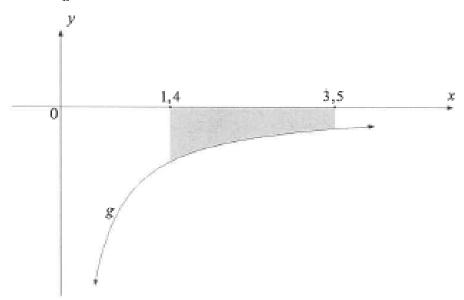
9.1.2
$$\int (x-1)^2 dx$$
 (4)

9.2 The sketch below represents the bounded area of the curve of the function defined by $f(x) = x^2 + 3$

Determine the shaded area bounded by the curve and the x-axis between the points where x = -2 and x = 1

(6)

[12]


NOV 2019 QUESTION 9

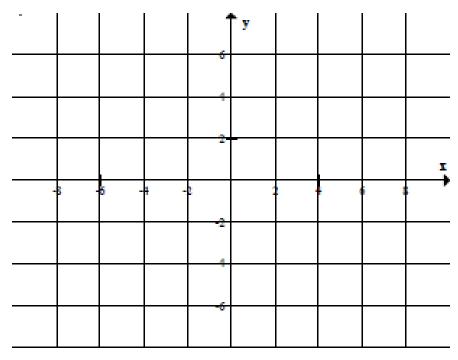
9.1 Determine the following integrals:

9.1.1
$$\int mx^p dx$$
 where $p \neq -1$ (2)

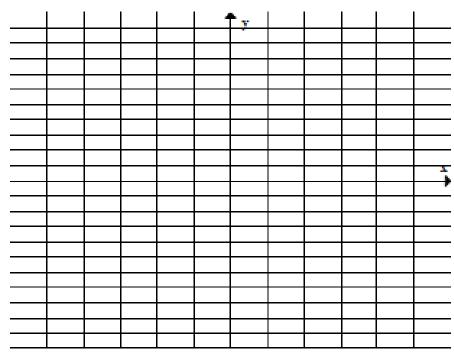
9.1.2
$$\int \left(\frac{x^{-3} + x^2}{x^{-1}} - 2 \right) dx \tag{4}$$

9.2 The sketch below shows the shaded bounded area of the curve of the function defined by $g(x) = -\frac{4}{x}$, where x > 0.

Determine (showing ALL calculations) the shaded area bounded by the curve and the x-axis between the points where x = 1, 4 and x = 3, 5. (6)

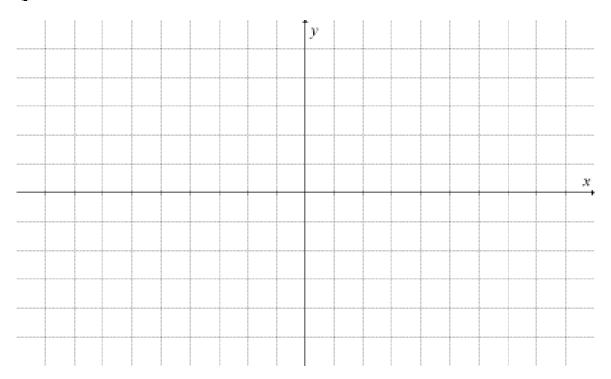

ANSWER SHEETS

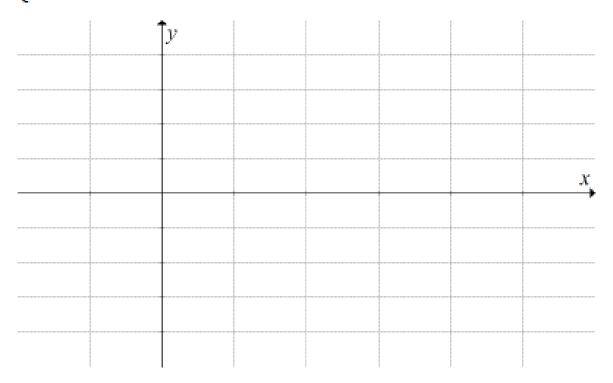
EXEMPLAR 2018


ANSWER SHEET

NAN	1 H T	SCHOOL:
1714		

QUESTION 4.2.4

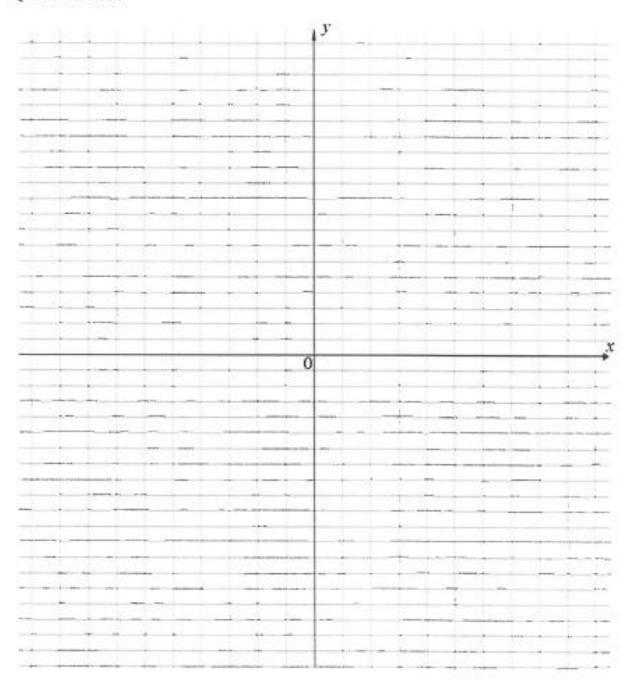

QUESTION 7.4


NOV 2018

CENTRE NUMBER								
EXAMINATION NUMBER								

QUESTION 4.1.3

QUESTION 7.5



NOV 2019

ANSWER SHEET

CENTRE NUMBER			
EXAMINATION NUMBER			T

QUESTION 4.1.5

ANNEXURE A: INFORMATION SHEET

INFORMATION SHEET: TECHNICAL MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad x = -\frac{b}{2a} \qquad y = \frac{4ac - b^2}{4a}$$

$$x = -\frac{b}{2a}$$

$$y = \frac{4ac - b^2}{4a}$$

$$a^x = b \Leftrightarrow x = \log_a b$$
, $a > 0$, $a \neq 1$ and $b > 0$

$$a>0$$
, $a\neq 1$ and $b>0$

$$A = P(1+ni) \qquad \qquad A = P(1-ni) \qquad \qquad A = P(1-i)^n \qquad \qquad A = P(1+i)^n$$

$$A = P(1 - ni)$$

$$A = P(1-i)^{i}$$

$$A = P(1+i)^n$$

$$i_{qff} = \left(1 + \frac{i}{m}\right)^m - 1$$

$$f'(x) - \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad , \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln x + C, \qquad x > 0$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \quad , \quad a > 0$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m - \tan \theta$

$$m = \tan \theta$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

area of
$$\triangle ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta$$
 $\cot^2 \theta + 1 = \csc^2 \theta$

 $\pi rad = 180^{\circ}$

Angular velocity = $\omega = 2\pi n = 360^{\circ}n$ where n = rotation frequency

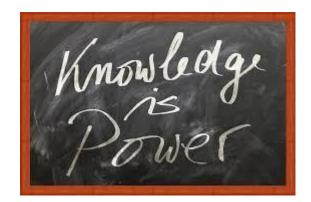
Circumferencial velocity $= v = \pi Dn$ where D = diameter and n = rotation frequency

 $s = r\theta$ where r = radius and $\theta = central$ angle in radians

Area of a sector
$$=$$
 $\frac{rs}{2} = \frac{r^2\theta}{2}$ where r = radius, s = arc length and θ = central angle in radians

$$4h^2 - 4dh + x^2 = 0$$
 where $h = \text{height of segment}$, $d = \text{diameter of circle and}$
 $x = \text{length of chord}$

$$A_T = a(m_1 + m_2 + m_3 + ... + m_n)$$
 where $a = \text{equal parts}, m_1 = \frac{o_1 + o_2}{2}$
and $n = \text{number of ordinates}$


or

$$A_T = a \left(\frac{o_1 + o_n}{2} + o_2 + o_3 + o_4 + \ldots + o_{n-1} \right)$$
 where $a = \text{equal parts}$, $o_i = i^{th}$ ordinate and $n = \text{number of ordinates}$

EC CURRICULUM: FET MATHEMATICS, MATHEMATICAL LITERACY AND TECHNICAL MATHEMATICS

MEMORANDA GROUPED ACCORDING TO TOPICS

ALGEBRA EXEMPLR 2018

QUESTION 1

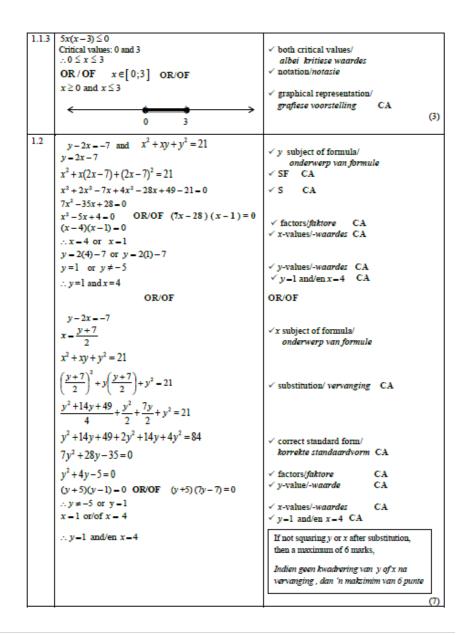
1.1.1	x(x+2) = 0	
	∴ x = 0 or x = -2	√x=0
		√x=-2
		(2)
		(2)
1.1.2	$x(x+2) \ge 0$	
	∴x≤-2 OR x≥0	√x ≤ -2 √x ≥ 0
		✓ OR
	— ———	√Graphical representation
	-2 0	(4)
1.2	$5x^2 - 2 + x$	
	$5x^2 - x - 2 = 0$	✓Standard form
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$	
	$x = \frac{3 - 10^{\circ}}{2a}$	
	20	✓Substitution into the quadratic
	$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(5)(-2)}}{2(5)} = \frac{1 \pm \sqrt{41}}{10}$	formula
	2(5) 10	Ioimua
		√x≈0,74 √x≈-0,54
	$\therefore x \approx 0.74$ or $x \approx -0.54$	
1.3	m-t-1 = 0	(4
1.5	m-t-1=0 m=t+1	✓Making m the subject
	m = 1 + 1 $m^2 + t^2 = 5$	▼ Making m the subject
	1.0	
	$(t+1)^2 + t^2 = 5$	✓ Substitution
	$t^2 + 2t + 1 + t^2 - 5 = 0$	✓Simplification
	$2t^2 + 2t - 4 = 0$	
	$t^2 + t - 2 = 0$	
	(t+2)(t-1) = 0	√ Factors
	t = -2 or $t = 1$	✓ Both values of t
	m = -2 + 1 = -1 or $m = 1 + 1 = 2$	✓ Both values of m
	m = 2:1 -1 01 m -1:1-2	- Down values of m
	OR	OR
	m-t-1=0	
	t=m-1	✓ Making t the subject
	$m^2 + t^2 = 0$	(Cabasinasian
	$m^2 + (m-1)^2 = 5$	✓ Substitution
		✓Simplification
	$m^2 + m^2 - 2m + 1 - 5 = 0$	- Simpiffication
	$2m^2 - 2m - 4 = 0$	
	$m^2 - m - 2 = 0$	√Factors
	(m-2)(m+1) = 0	✓ Pactors ✓ Both values of m
	∴ m = 2 or m = -1	✓ Both values of t
	t=2-1=1 or $t=-1-1=-2$	(6)
		(0)

1.4.1	$s = \frac{L_2 - L_1}{L_1}$ $\varepsilon L_1 = L_2 - L_1$ $\varepsilon L_1 + L_1 = L_2$ $L_1(\varepsilon + 1) = L_2$ $L_1 = \frac{L_2}{(\varepsilon + 1)}$	$s = \frac{L_2}{L_1} - 1$ $s + 1 = \frac{L_2}{L_1}$ $L_1(s + 1) = L_2$ $\therefore L_1 = \frac{L_2}{(s + 1)}$	✓multiply with LCD ✓common factor ✓divide by factor	(3)
1.4.2	$L_{1} = \frac{L_{2}}{s+1}$ $= \frac{18}{1+0.8} \text{ cm}$ $= 10 \text{ cm}$		✓ Substitution ✓ Simplification	(2)
1.4.3	10=8+2 = 2 ³ +2 =1010 ₂		√2³+2 √1010₂,	(2)
1.5	12×0,00361 = 0,04332 = 4,332×10 ⁻²		✓ 0,04332 ✓ 4,332×10 ⁻²	
				[25]

QUESTION 2

2.1.1	p = -1	✓ p = -1
2.1.2	9-3p<0	√9-3p<0 (1)
	9 < 3p ∴ p > 3	✓ p>3
2.1.3	0 OR 3	√0 OR 3
	OK 3	(1)
2.2	$x^{2}-4x+(k-1)=0$ For equal roots, $\Delta = b^{2}-4ac=0$	\checkmark For equal roots, $\Delta = 0$
	$(-4)^2 - 4(1)(k-1) = 0$ 16 - 4k + 4 = 0	✓ Substitution
	-4k = -20	✓ Simplification
	∴ k = 5	✓ Value of k (4)
		[8]

QUESTION 3

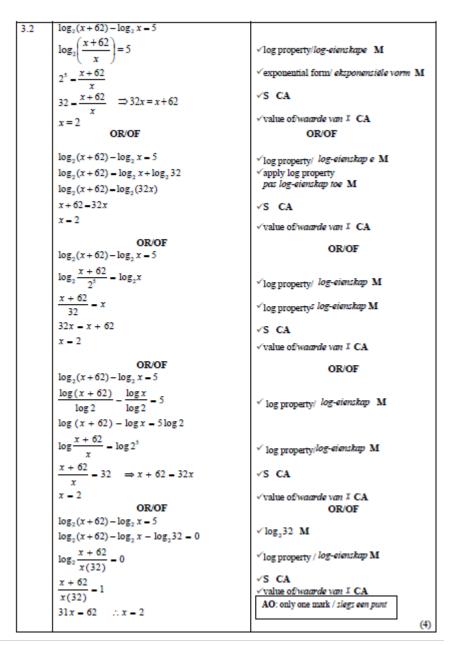

		<u> </u>
3.1.1	$ \frac{5 \times 2^{n-1} - 2^n}{2^n} \\ - \frac{2^n (5 \times 2^{-1} - 1)}{2^n} \\ - 5 \times \frac{1}{2} - 1 - \frac{3}{2} $ OR	✓✓Common factor ✓Simplification
	$\frac{5 \times 2^{n-1} - 2^n}{2^n}$ $-\frac{5 \times 2^{n-1}}{2^n} - \frac{2^n}{2^n} - 5 \times 2^{-1} - 1$ $-2\frac{1}{2} - 1 - \frac{3}{2}$	✓✓Dividing each term by the denominator ✓Simplification (3)
	$ \sqrt{64+16} - \sqrt{20} = \sqrt{80} - \sqrt{4 \times 5} - 4\sqrt{5} - 2\sqrt{5} - 2\sqrt{5} $	✓ Addition ✓ Simplified surd ✓ Simplified surd ✓ Simplification (4)
3.1.3	$\log_{6} 216 \times \log 0,001$ $= \log_{6} 6^{3} \times \log \frac{1}{1000}$ $= \log_{6} 6^{3} \times \log 10^{-3}$ $= 3\log_{6} 6 \times (-3\log 10)$ $= 3(1) \times (-3)(1)$ $= -9$	$\sqrt{\log_6 6^3} \sqrt{\log 10^{-3}}$ $\sqrt{3\log_6 6 - 3\log 10}$ $\sqrt{\text{Simplification}}$ (4)
3.2.2	$\log(x+18) - \log x = 1$ $\log \frac{(x+18)}{x} = 1$ $\frac{(x+18)}{x} = 10$ $10x = x+18$ $9x = 18$ $\therefore x = 2$	✓ Apply log property ✓ Change from log form to exp. Form ✓ Simplification ✓ Value of x (4)

3.3	$z = 3 + \sqrt{3}i$ $ z - r - \sqrt{x^2 + y^2}$ $- \sqrt{(3)^2 + (\sqrt{3})^2} = \sqrt{12}$	✓ Calculating the modulus ✓ Simplification
	$\tan \theta = \frac{\sqrt{3}}{3}$ $\theta = 30^{\circ}$	$\sqrt{\tan \theta} = \frac{\sqrt{3}}{3}$ $\sqrt{\text{Argument}}$
	$z = \sqrt{12} \operatorname{cis}(30^{\circ}) \text{ OR } z = \sqrt{12} [\cos 30^{\circ} + i \sin 30^{\circ}]$	✓Correct polar form (5)
3.4	$x + yi = (3 + 5i)(2 - 7i)$ $x + yi = 6 - 11i - 35i^{2}$ $x + yi = 6 - 11i - 35(-1)$ $x + yi = 6 - 11i + 35$	$ \begin{array}{l} \checkmark 6 - 11i - 35i^2 \\ \checkmark i^2 = -1 \end{array} $
	x + yi = 41 - 11i $\therefore x = 41 \text{ and } y = -11$	√x = 41 √ y = −11 (4) [24]

NOV 2018

QUESTION/VRAAG1

		
1.1.1	-2x(x+a)(3-x)=0	√ x = 0 A
	x=0 or/of $x=-a$ or/of $x=3$	√ x = -a A
		√x=3 A
		(3)
1.1.2		
1.1.2	$2x = 6 - x^2$	Coton local Committee de contraction
	$x^2 + 2x - 6 = 0$	✓ standard form/ standaardvorm
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$	
	$x = \frac{0 \pm \sqrt{0} - 4ac}{2}$	✓ SF CA
	2a	V SF CA
	$-2\pm\sqrt{2^2-4(1)(-6)}$	
	$=\frac{-2\pm\sqrt{2^2-4(1)(-6)}}{2(1)}$	✓S CA
	$=\frac{-2\pm\sqrt{28}}{2}$	
	= - 2 120	✓ both values of beide waardes van x
	∴ x≈1.65 or/of x≈-3.65	CA
	∴ x≈1,05 01/01 x≈ -3,05	
	OR/OF	OR/OF
	$2x - 6 - x^2$	
	$x^2 + 2x = 6$	
	$x^2 + 2x + 1 = 6 + 1$	√ completing square/ kwadraatsvoltooiing
	$(x+1)^2 = 7$	/
	$x+1=\pm\sqrt{7}$	✓ square as subject/ vierkant as onderwerp CA
		✓ square root/ vierkantswortel CA
	$x = -1 \pm \sqrt{7}$	square 1000 vierkaniswories CA
	$\therefore x \approx 1.65 \text{ or/of } x \approx -3.65$	✓ both values of/beide waardes van x
		CA
		NPR
		AO fell marks (sweet unbase)
		AO, full marks (exact values)/
		volpunte (eksakte waardes)
		(4)

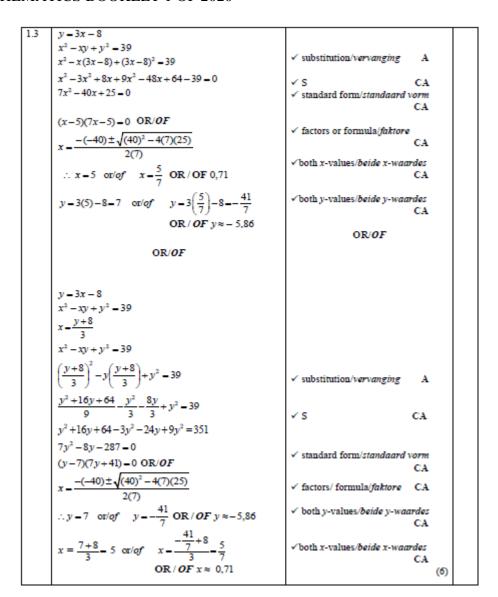

1.3.1	$E = \frac{1}{12}ML^2$	✓ L ² subject/onderwerp
	$L^2 = \frac{12 E}{M}$	✓ L subject/onderwerp CA (2)
	$\therefore L = \sqrt{\frac{12E}{M}} \text{ OR / OF } 2\sqrt{\frac{3E}{M}} \text{ OR / OF } \sqrt{\frac{E}{\frac{1}{12}M}}$	AO, full marks /volpunte
1.3.2	$L = \sqrt{\frac{12E}{M}}$	CA from Question 1.3.1/ van Vraag 1.3.1
	$= \sqrt{\frac{12 (8.3 \times 10^{-2})}{1.6 \times 10^{3}}}$ $\therefore L \approx 0.02 \text{ m}$	✓ SF CA ✓ value of/waarde van L CA
	OR/OF	OR/OF
	$L = 2\sqrt{\frac{3E}{M}}$	
	$=2\sqrt{\frac{3(8,3\times10^{-2})}{1,6\times10^3}}$	✓ SF CA
	√ 1,6×10³ ∴ L≈ 0,02 m	✓ value of/waarde van L CA
	OR/OF	OR/OF
	$E = \frac{1}{12}ML^2$	
	$8.3 \times 10^{-2} = \frac{1}{12} (1.6 \times 10^{3}) L^{2}$	✓ SF CA
	$L = \sqrt{\frac{12(8,3\times10^{-2})}{1,6\times10^{3}}}$	
	∴ L≈ 0,02 m	✓ value of/waarde van L CA (2)
		NPU NPR
		(Accept scientific notation/Aanvaar
1.4	26-22 - 4	wetenskaplike notasie)
1.4	36 = 32 + 4 = 100100 ₂	✓ 32+4 A ✓ 100100 ₂ A
	_	- 1001002 A
		AO: Full marks/ Volpunte (2)
		[23]

QUESTION/VRAAG 2

2.1	$x = \frac{-8 \pm \sqrt{q-3}}{2}$	
2.1.1	Irrational / brasionaal	✓ irrational / irrasionaal
		(Accept: real and unequal/
		Aanvaar:reeel en ongelyk)
		(1)
2.1.2	Equal / gelyk	√ equal
		(Accept: real OR rational/
		Aanvaar: reel OF rasionaal)
		(1)
2.1.3	Non-real	√ non-real/nie-reël
	Nie-reël	(accept imaginary/
		aanvaar imaginer)
		(1)
2.2	$3x^2 + 7x = 2x + p$	(-)
	$3x^2 + 5x - p = 0$	
	3x + 3x - p = 0	√standard form/standaardvorm
	$\Delta = b^2 - 4ac < 0$	
	$\Delta = b^{-} - 4ac < 0$	
	(5)2 4(2)(-) +0	✓ SF in △ CA
1	$(5)^2 - 4(3)(-p) < 0$ 25 + 12p < 0	✓ correct inequality/
1		korrekte ongelykheid (<0) A
1	$p < -\frac{25}{100}$	
1	12	✓ values of/waardes van p CA
		(4)
		[7]

QUESTION/VRAAG 3

3.1.1	$\left(2a^{\frac{7}{3}}\right)^3 - 2^3 \times \left(a^{\frac{7}{3}}\right)^3$ $-8a^7$	✓ exponent property/ eksponenteienskap A ✓ S CA
	OR/OF	OR/OF
		52.51
	$\left(2a^{\frac{7}{3}}\right)^3 - \left(2a^{\frac{7}{3}}\right)\left(2a^{\frac{7}{3}}\right)\left(2a^{\frac{7}{3}}\right)$	✓ exponent property/eksponenteienskap A
	-8a ⁷	✓ S CA AO: Full marks / Volpunte
		(2)
3.1.2	log, p + log, 1 = 1+0 = 1	√1 A √0 A
		AO: only one mark/ slegs een punt
		(2)
3.1.3	$ \frac{\sqrt{48} - \sqrt{12}}{2\sqrt{75}} \\ = \frac{\sqrt{3 \times 16} - \sqrt{3 \times 4}}{2\sqrt{3 \times 25}} $	
	$= \frac{4\sqrt{3} - 2\sqrt{3}}{2 \times 5\sqrt{3}} \text{OR } \frac{\sqrt{3}(4-2)}{10\sqrt{3}}$	$\sqrt{\frac{4\sqrt{3}-2\sqrt{3}}{2.5\sqrt{3}}}$ M
	$=\frac{2\sqrt{3}}{10\sqrt{3}}$	√S CA
	$=\frac{1}{5}$	√S CA
	OR/OF $\frac{\sqrt{48} - \sqrt{12}}{2\sqrt{75}}$	OR/OF
	$ \frac{\sqrt{48} - \sqrt{12}}{2\sqrt{75}} $ $ -\frac{\sqrt{48}}{2\sqrt{75}} - \frac{\sqrt{12}}{2\sqrt{75}} $	✓ M
	$=\frac{4\sqrt{3}}{10\sqrt{3}} - \frac{2\sqrt{3}}{10\sqrt{3}}$	✓ S CA
	$=\frac{2}{5}-\frac{1}{5}=\frac{1}{5}$	✓ S CA
		AO: Only one mark / Slegs een punt



2.2	E . E .	
3.3	$z = -\sqrt{2} + \sqrt{2}i$	
	$ z = r = \sqrt{x^2 + y^2}$	
	$=\sqrt{(-\sqrt{2})^2+(\sqrt{2})^2}=\sqrt{4}$	√calculating the modulus/
	= 2	bereken die modulus M
		√S CA
	$\theta = \tan^{-1} \left(\frac{\sqrt{2}}{\sqrt{2}} \right)$	$\sigma = \tan^{-1} \left(\frac{\sqrt{2}}{\sqrt{2}} \right) \mathbf{M}$
	(-)	
	OR any other trig, ratio to find θ	
	OF enige ander trig verh, of θ te bepaal	√ref. angle/varwysingshook CA
	= 45° OR/OF $\frac{\pi}{4}$	
	Ť	
	s 1000 450 1050 OP OF 3π	√correct quadrant/ korrekte kwadrant CA
	$\theta = 180^{\circ} - 45^{\circ} = 135^{\circ}$ OR/OF $\frac{3\pi}{4}$	korrekte kwaarant CA
	$\therefore z = 2cis(135^\circ)$ OR/OF $z = 2cis\left(\frac{3\pi}{4}\right)$	√polar form/polâre vorm CA
	(.)	Accept/Aanvaar: $z = 2[\cos 135^{\circ} + i \sin 135^{\circ}]$
		$z = 2 \left[\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right]$
3.4	-1 -2 - /2 252	(6)
3.4	$p + qi = (2 - 3i)^2$	
	$=4-12i+9i^2$	$\sqrt{\text{expansion}/\text{uitbreiding}}$ $\sqrt{i^2}$ = −1 A
	=4-12i+9(-1)	∨ <i>I</i> = -1 A
	= - 5 - 12 <i>i</i>	✓ p = -5 ✓ q = -12 CA
	p = -5 and/en q = -12	1 -
		(4) [21]
		[21]

NOV 2019

1.1.1	$p(x) = 2x^2 - \frac{8}{81}$			
	$=2\left(x^2-\frac{4}{81}\right)$	√common factor/gemene faktor	A	
	$=2\left(x-\frac{2}{9}\right)\left(x+\frac{2}{9}\right)$	✓ both factors/beide faktore	CA	
	OR/OF $p(x) = \frac{162x^2 - 8}{81}$	OR/ <i>0F</i>		
	$=\frac{2(81x^2-4)}{81}$	√ common factor/gemene faktor	A	
	$=\frac{2(9x-2)(9x+2)}{81}$	✓ both factors/beide faktore	CA (2)	
1.1.2	$p(x) = 2\left(x - \frac{2}{9}\right)\left(x + \frac{2}{9}\right) = 0$ $\therefore x - \frac{2}{9} \text{or/of } x - \frac{2}{9} \text{OR/OF}$ $\therefore x - \pm \frac{2}{9} \text{OR/OF } x \approx \pm 0,22$	✓ both values of/beide waardes van	x CA	
	$x = \frac{-(0) \pm \sqrt{(0)^2 - 4(2)\left(-\frac{8}{81}\right)}}{2(2)}$	OR/OF		
	$\therefore x = \frac{2}{9} \text{ or/of } x = -\frac{2}{9} $ OR/OF $\therefore x = \pm \frac{2}{9} $ OR/OF $x \approx \pm 0.22$	✓ both values of/beide waardes van	x CA (1)	

		T	
1.2.1	$(3x-5)(x+2) = -13$ $3x^2 + x - 10 + 13 = 0$ $3x^2 + x + 3 = 0$	✓ standard form/standaard	vorm A
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(1) \pm \sqrt{(1)^2 - 4(3)(3)}}{2(3)}$	✓ SF	CA
	$x = \frac{-1 \pm \sqrt{-35}}{6}$	√S	CA
	$x = \frac{-1 \pm \sqrt{35} i}{6} \qquad \text{OR/OF } x \approx \frac{-1 \pm 5,92i}{6}$ $\frac{\text{OR/OF}}{6}$	$\sqrt{-35} = \sqrt{35} i$ $\sqrt{\text{both } x\text{-values}/beide } x\text{-waar}$	CA des CA
	$x = -\frac{1}{6} + \frac{\sqrt{35}}{6}i \text{ or/} of -\frac{1}{6} - \frac{\sqrt{35}}{6}i$ OR/OF		
	$x \approx -0.17 + 0.99i$ or or of $x \approx -0.17 - 0.99i$ OR/OF		
	$x = -\frac{1}{6} \pm \frac{\sqrt{35}}{6}i$ OR/OF $x \approx -0.17 \pm 0.99i$		(5)
1.2.2	(4-x)(x+3) < 0 OR/OF $(x-4)(x+3) > 0CV: x=-3 and x=4x<-3$ or/of $x>4$ OR/OF	✓✓correct notation for each	A .
	$x \in (-\infty; -3) \cup (4; \infty)$	interval/korrekte notasie v elke interval Accept Number Line/ Aanvaar getallelyn	CA
		-3 4	→ ₍₃₎

-		
	$V = I \times Z$ $I = \frac{V}{Z} OR/OF I = VZ^{-1}$	✓ dividing by/deel deur Z A (1)
1.4.2	$I = \frac{V}{Z}$ $= \frac{7i}{3-i}$	✓ substitution/vervanging CA
	$= \frac{7i}{3-i} \times \frac{3+i}{3+i}$	✓ M multiply by/ vermenigvuldig met $\frac{3+i}{3+i}$
	$=\frac{2li+7i^2}{9-i^2}$	✓S CA
	$= \frac{21i + 7(-1)}{9 - (-1)}$	✓ value of/waarde van i² A
	$= \frac{-7 + 2li}{10} OR/OF - 0,7 + 2,1i OR/OF$ $\frac{-7}{10} + \frac{2li}{10}$	✓ value of current/waarde van. stroom CA
	10 10	NPU
1.5	1 0 12	(5)
	_	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ M A
	1 1 1 12	✓11111 ₂ A
	OR/OF	OR/OF
	101 ₂ ×11 ₂ =5×3=15 OR/OF 1111 ₂	✓ both/beide 5 and/en 3 A
		√1111 ₂ OR/OF 15 A
		AO: Full marks/Volpunte
		(2)
		[25]

$G = \sqrt{\frac{p+1}{2p-1}}$		
2p-1=0	1	
$\therefore p = \frac{1}{2}$	_	
p +1 = 0	(4)	+
<i>p</i> = −1		1
$x^2 - k + 4 = 5x$		
$x^2 - 5x - k + 4 = 0$	✓ standard form/ standard vorm A	
$b^2 - 4ac \ge 0$	✓ the discriminant/die diskriminant ≥0 A	
$(-5)^2 - 4(1)(-k+4) \ge 0$	✓ SF A	
$25 + 4k - 16 \ge 0$	√S CA	
4k+9 ≥ 0		
$k \geq -\frac{9}{4}$	(5)	
	$2p-1=0$ $\therefore p = \frac{1}{2}$ $p+1=0$ $p=-1$ $x^{2}-k+4=5x$ $x^{2}-5x-k+4=0$ $b^{2}-4ac \ge 0$ $(-5)^{2}-4(1)(-k+4) \ge 0$ $25+4k-16 \ge 0$ $4k+9 \ge 0$	$G = \sqrt{\frac{p+1}{2p-1}}$ $2p-1=0$ $p = \frac{1}{2}$ $p = \frac{1}{2}$ $p = -1$ $x^2 - k + 4 = 5x$ $x^2 - 5x - k + 4 = 0$ $b^2 - 4ac \ge 0$ $(-5)^2 - 4(1)(-k+4) \ge 0$ $25 + 4k - 16 \ge 0$ $4k + 9 \ge 0$ $x = \frac{1}{2}$

3.1	[
3.1	$(-2 \sqrt[4]{a^3})^8$	
	8 (1) 8	
	$=(-2)^8 (a^3)^{\frac{8}{4}}$	
	= 256a ⁶	
	= 250 a	✓ 256 A ✓ a ⁶ A
		(2)
3.2	$\log_2(3x-2) + \log_2 0, 5 = 3$	
#	$\log_2(3x - 2) + \log_2 2^{-1} = 3$	
	$\log_2(3x-2)-1=3$	√ log ₂ 0,5=-1 A
	$\log_2(3x-2) = 4$	✓S CA
	$(3x-2)=2^4$	✓ exponential form/eksponent
	3x-2=16	vorm CA
	x=6	✓correct value/korrekte waarde
		CA
	OR/OF	OR/OF
	$\log_2(3x-2) + \log_2 0, 5 = 3$	
	$\log_2(0,5)(3x-2) = 3$	√log property/eienskap A
	$(0,5)(3x-2)=2^3$	✓exponential form/eksponent
	(0,5)(3x-2) = 8	vorm A
	3x-2=16	✓ S CA
	x = 6	✓correct value/korrekte waarde CA
	OR/OF	OR/OF
	$log_2(3x-2) + log_2(0,5) = 3$	
	$\log_2(3x-2) = 3 - \log_2 0,5$	
	$\log_2(3x-2) = 3\log_2 2 - \log_2 0,5$	√log property/eienskap A
	$\log_2(3x-2) = \log_2 8 - \log_2 0,5$	
	$\log_2(3x-2) = \log_2\left(\frac{8}{0.5}\right)$	✓ log property/eienskap A
	3x - 2 = 16	✓S CA
	x = 6	✓correct value/korrekte waarde
	OR/OF	CA

$\log_2 0, 5(3x-2) = \log_2 2^3$	OR/OF
$\log_2 0.5 (3x-2) = \log_2 8$ $0.5 (3x-2) = 8$ $3x-2 = 16$ $x = 6$	✓log property/eienskap A ✓ log property/eienskap A ✓ S CA ✓ correct value/korrekte waarde CA
OR/OF	OR/OF
$\log_2(3x-2) + \log_2 0, 5 = 3$ $\log_2(3x-2) - \log_2 2 = 3$ $\log_2 \frac{(3x-2)}{2} = 3$ $\frac{(3x-2)}{2} = 2^3$	√log property/eienskap A
3x-2=16	√ log property/eienskap A
x = 6	✓ S CA
	✓ correct value/korrekte waarde CA
	(4)

$\log \sqrt{0.6}$	
= log(0,6) ^{$\frac{1}{2}$} OR/OF log(0,3×2) $\frac{1}{2}$ OR/OF log(0,2×3) $\frac{1}{2}$	✓ exp. form/eksp. vorm
$=\frac{1}{\log(6)} \log(6) OR/OF \frac{1}{\log(0.3\times2)} OR/OF \frac{1}{\log(0.2\times3)}$	A √ conversion of /
2 (10) 2 2	herleiding van 0,6 A
$=\frac{1}{2}\log\left(\frac{3\times2}{10}\right)$	
$=\frac{1}{2}(\log 3 + \log 2 - \log 10)$	✓ log property/eienskap
1/1. 1/2 op/op/1. 1 1	A
$=\frac{1}{2}(b+a-1)$ OK/OF $\frac{1}{2}b+\frac{1}{2}a-\frac{1}{2}$	√ log10-1
	CA
	✓ substitution/varvanging CA
OR/OF	
_	OR/OF
$\log \sqrt{0.6} = \log \sqrt{\frac{3}{2}}$	
10	✓ conversion of /
$-\frac{1}{2}\log 3 - \frac{1}{2}\log 5$	herleiding van 0,6 A
	√ log property/eienskap
$\log \sqrt{0,6} = \frac{1}{2} \log 3 + \frac{1}{2} (\log 2 - \log 10)$	A ✓ conversion of log 5 A
1(b, a, 1) OP/OF 1b, 1a, 1	v conversion of log 5 A
$\frac{1}{2}(v+u-1)$ GROV $\frac{1}{2}v+\frac{1}{2}u-\frac{1}{2}$	√log10=1
	CA
	✓ substitution/varvanging CA
	(5)
$V = 2(\cos 240^{\circ} + i \sin 240^{\circ})$	✓ value of/
OR/OF	waarde van V A (1)
$V = 2\left(\cos\frac{3}{4}\pi + i\sin\frac{3}{4}\pi\right)$	
	$= \log(0,6)^{\frac{1}{2}} \text{ OR} / \text{OF} \log(0,3\times 2)^{\frac{1}{2}} \text{ OR} / \text{OF} \log(0,2\times 3)^{\frac{1}{2}}$ $= \frac{1}{2} \log\left(\frac{6}{10}\right) \text{ OR} / \text{OF} \frac{1}{2} \log(0,3\times 2) \text{ OR} / \text{OF} \frac{1}{2} \log(0,2\times 3)$ $= \frac{1}{2} \log\left(\frac{3\times 2}{10}\right)$ $= \frac{1}{2} (\log 3 + \log 2 - \log 10)$ $= \frac{1}{2} (b + a - 1) \text{ OR} / \text{OF} \frac{1}{2} b + \frac{1}{2} a - \frac{1}{2}$ OR / OF $\log \sqrt{0,6} = \log \sqrt{\frac{3}{5}}$ $= \frac{1}{2} \log 3 - \frac{1}{2} \log 5$ $\therefore \log \sqrt{0,6} - \frac{1}{2} \log 3 + \frac{1}{2} (\log 2 - \log 10)$ $= \frac{1}{2} (b + a - 1) \text{ OR} / \text{OF} \frac{1}{2} b + \frac{1}{2} a - \frac{1}{2}$ $\text{V} = 2 (\cos 240^{\circ} + i \sin 240^{\circ})$ OR / OF

3.4.2	$V = 2(\cos 240^{\circ} + i \sin 240^{\circ}) \text{ OR/} OF$ $V = 2(\cos \frac{3}{4}\pi + i \sin \frac{3}{4}\pi)$ $V = 2\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$	CA from/vanaf Q/V3.4.1 ✓ value of/waarde van cos 240° OR/OF cos $\frac{3}{4}\pi$ CA ✓ value of/waarde van
	$\therefore \mathbf{V} = -1 - \sqrt{3}i$	sin 240° OR/OF sin $\frac{3}{4}\pi$ CA V in rect. form/ in regh.vorm CA
	OR/OF	OR/OF
	$\theta = 60^{\circ}$ [ref angle/ verw. hoek]	✓ ref. angle/verw. hoek
	$\tan 60^\circ = \sqrt{3} = \frac{-\sqrt{3}}{-1}$	✓ tan ratio/verhouding A
	$V = -1 - \sqrt{3} i$	✓ V in rect form/ in regh.vorm CA
		AO: Full marks/Volpunte (3)
3.5	m + ni = 2(6 - 4i) - (-7i)	
	=12-8i+7i = 12-i	
	m=12 and $n=-1$	✓ value of m/ waarde van m A ✓value of n/ waarde van n A
	OR/OF	OR/OF
	$m = 2(6) = 12$ and $l \in n$ $n = 2(-4) - (-7) = -1$	✓ value of m/ Waarde van m A ✓value of n/ Waarde van n A (2) AO: Full marks/Volpunte

FUNCTIONS AND GRAPHS EXEMPLAR 2018

QUESTION 4

4.1.1 x - intercepts, $f(x) = 0$	
$2x^2 + 4x - 6 = 0$ (Finding other for	
2(x+3)(x-1) = 0 OR $(x+3)(2x-21) = 0$ Finding other fa	ctor
$\therefore x = -3 \text{ or } x = 1$ \checkmark Coordinates of	R
.: B(1; 0)	(2)
4.1.2 $f(x) = 2x^2 + 4x - 6$	-/-
$\left(\frac{-b}{2a}; \frac{4ac - b^2}{4a}\right) = \left(\frac{-4}{2(2)}; \frac{4(2)(-6) - (4)^2}{4(2)}\right)$ \$\times \text{Substitution in}\$	n formula
∴D(-1;-8) ✓ Coordinates of I	D
OR OR	
/Substitution in 6	formula
$x = \frac{-b}{2a} = \frac{-4}{2(2)}$	
✓ Substitution to t	ind y
∴x=-1	
$f(-1) = 2(-1)^2 + 4(-1) - 6 = -8$ \checkmark Coordinates of I	D
∴D(-1;-8)	
OR OR -3+1 Vusing x-interce	
$x_D = \frac{-3+1}{2} = -1$	pts
/Cubatitution to 4	find v
$f(-1) = 2(-1)^{\circ} + 4(-1) - 6 = -8$ $\sqrt{\text{Coordinates of I}}$	
∴D(-1;-8)	
OR OR	
$f(x) = 2x^2 + 4x - 6$	•
f'(x) = 4x + 4 = 0	itive
$\therefore x = -1$ \checkmark Substitution to f	find v
$f(-1) = 2(-1)^2 + 4(-1) - 6 = -8$	
✓Coordinates of I	D
∴D(-1;-8)	(3)
4.1.3 $g(x) = k^x + q$	
$10 = k^2 + 6$ Substituting coo	rdinates of Q
$k^2 = 4$	
$\kappa = 4$ $\therefore k = 2$ \checkmark Simplified equal \checkmark Correct value of	
V Correct value of	(3)
4.1.4 y=6 \(\sqrt{y=6}	(3)
	(1)
4.1.5 −3 < x < 1 ✓ Correct critical v	
✓ Correct notation	1
	(2)

4.2.1	x = 0 and $y = 1$	✓ x = 0 ✓ y = 1 (2)
4.2.2	$h(x) = \frac{3}{x} + 1$	(2)
	$0 = \frac{3}{x} + 1$	✓Substituting coordinates of Q
	$-1 = \frac{3}{x}$	✓ Value of x
	∴ x = -3	(2)
4.2.3	r = 2	✓ r=2 (1)
4.2.4		
7.2.7	2 (1; 4)	✓ Shape of h ✓ Asymptote ✓ x-intercept ✓ Any other point on the graph of h
	-3 -2 2 X	✓Shape of g ✓x-intercepts of g ✓y-intercept of g (7)
4.2.5	$0 \le y \le 2$	✓ 0≤y ✓ y≤2
		(2) [25]

NOV 2018

	Q4.1.2: Penalty of ONE mark if intercepts are not given as co Question 7.1}\	oordinates (refer also to
	V 4.1.2: Penaliseer EEN punt indien afsnitte nie as ko-ordinate Vraag 7.1)	gegee (verwys ook na
4.1.1	x = 0 and/en $y = -1$	✓vertical asymptote/ vertikale asimptoot A ✓ horizontal asymptote/ horisontale asimptoot A (2)
4.1.2	$h(x) = -\frac{6}{x} - 1$ $0 = -\frac{6}{x} - 1$ $\therefore x = -6$	$\sqrt{0-\frac{6}{x}-1}$ M
	(-6;0)	√ −6 A (2)
4.1.3	(0:0)	✓ horizontal asymptote/ horizontale asimptoot CA from/van Q/V 4.1.1 E: ✓ intercept/aftnit (0; 0) A ✓ shape/vorm A h:
4.1.4	$g(-2) = 2^{-(-2)} - 1 = 3$	√SF A
	OR/OF $3 = 2^{-z} - 1$	OR/OF
	$2^2 = 2^{-x}$	
	$\therefore x = -2$	√SF A (1)
4.1.5	$y > -1$ OR/OF $y \in (-1; \infty)$	✓ y>-1 A
4.1.6	$x \neq 0$ OR/OF $x \in (-\infty; 0) \cup (0; \infty)$	✓ A (1)
	OR/OF $x \in \mathbb{R}$; $x \neq 0$ OR/OF $x < 0$ or $x > 0$	
	OR/OF $x \in \mathbb{R} - \{0\}$	(1)

4.2.1	M(1;0)	√ (1;0) A
		(1)
4.2.2	MT = 8	√length of/lengte van MT A
	MR. = $g(1) = \sqrt{36 - (1)^2} = \sqrt{35}$	
	'	√length of/lengte van MK SF
	∴ TR = MT – MR • 8 – √35	√length of/lengte van TR CA
1		(3)
4.2.3	$g(0) = \sqrt{36 - (0)^2} = 6$	
	∴L(0:6)	✓SF A
	OR/OF	
		OR/OF
	$r = \sqrt{36} = 6$	Control stime or directly market and directly
	L(0:6)	✓ calculating radius/bereken radius A
1	2(0,0)	(1)
4.2.4	$f(x) = y = a(x+p)^2 + q$	
	$y=a(x-1)^2+8$	√SF (1:8)
	$6=a(0-1)^2+8$	
	a=-2	√a=-2 CA
		· · · · · · · · · · · · · · · · · · ·
	$f(x) = -2(x-1)^2 + 8$	
	$=-2(x^2-2x+1)+8$	√S CA
	\ /	
	$=-2x^2+4x+6$	
	$=-2(x^2-2x-3)$	√ common factor/ gemenee faktor M
	f(x) = -2(x+1)(x-3)	(4)
4.2.5	∴K (-1;0)	✓ coordinates of / koordinate van K A
		(1)
4.2.6	()	CA from /van Q4.2.5
	$x \in (-1,0)$	(minimal malarest between the Co
	OR/OF	✓ critical values/ kritiese waardes CA OR/OF
	-1 < x < 0	✓notation/notasie CA
		v notation/notasie CA (2)
		[24]

NOV 2019

4.1.1	(x-5)(x+3)=0 x=5 or/ of x=-3 OR/OF (5;0) and/ en (-3;0)	✓ both values of/ beide waardes van x A (1)
4.1.2	$q(x) = \frac{12}{x} - 2$ $\frac{12}{x} - 2 = 0$ $2x = 12$	✓ y=0 A
	$x = 6$ OR/OF $(6;0)$ OR/OF $q(x) = \frac{a}{x} + p$	✓ x - value/waarde CA OR/OF
	$q(x) = \frac{a}{x} + p$ $x = \frac{a}{-p} \qquad [q(x) = 0]$ $= \frac{12}{-(-2)}$ OR (OF) (6.6)	✓ y=0 A ✓ x-value/waarde CA
	= 6 OR/OF (6;0)	AO: Full marks

4.1.3	$x = \frac{5-3}{2} = 1$	✓ M CA ✓ x = 1 ✓ y = -16 CA	A
	k(1) = (1-5)(1+3) = -16	· y = -10 C.	`
	∴TP/DP (1;-16)	ODIOE	
	OR/OF	OR/OF	
	(x-5)(x+3) = 0		
	$x^2 - 2x - 15 = 0$		
	$x = \frac{-b}{2a} = \frac{-(-2)}{2(1)} = 1$	✓ M C. ✓ x=1 A	
	$k(1) = (1)^2 - 2(1) - 15 = -16$ OR / OF		
	$y = \frac{4ac - b^2}{4a} = \frac{4(1)(-15) - (-2)^2}{4(1)} = -16$	✓ y = -16 A	
	∴ TP/DP (1;-16)		
	OR/OF	OR/OF	
	k'(x) = 2x - 2 2x - 2 = 0 ∴ x = 1	✓ M A ✓ x=1 A	.
	$k(1) = (1)^2 - 2(1) - 15 = -16$ $\therefore TP/DP(1; -16)$	√y=-16 C.	3)
4.1.4	y = -2	✓ y = -2	A
	x=0	-	A
		(2)
4.1.5	-3 0 5 6 x	Graph / grafiek k. ×x-intercepts/afsnitte vy-intercept/afsnitte c shape/vorm turning point/	e A
	-15 (I ₂ -16)	✓ shape/vorm	

4.2.1	d = - 4	✓ value of/waarde van d
1.2.2	u = - 4	A
		Accept/ Aanvaar
		v = -4
		(1)
4.2.2	$h(x) = a^x - 4$	✓ substitution/vavanging
	$-2 = a^{-1} - 4$	CA
	1	LA
	$a = \frac{1}{2}$	✓ correct value of/
	(1)*	korrekte waarde van a
	$h(x) = \left(\frac{1}{2}\right)^x - 4$	CA
	(2)	(2)
4.2.3	$h(0) = a^0 - 4$ OR/OF $h(0) = (0,5)^0 - 4$	✓ x = 0 A
	T(0; -3)	✓ y = -3 CA
		(2)
4.2.4	$y \in [-3; 0]$ OR/OF $-3 \le y \le 0$	✓ range/
	V-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	waardeversm(terrein)
		CA
		(1)
4.2.5		
	$p(x) = -\sqrt{9-x^2}$	✓ equation of/
		vergelyking van p CA
	$\therefore w(x) = \sqrt{9 - x^2} \text{OR/OF} \therefore w(x) = \sqrt{r^2 - x^2}$	✓ equation of/
		vergelyking van w CA
		(2)
		AO: Full marks/Volpunte
4.2.6	$0 < x \le 3 \text{ OR}/OF \ x \in \{0; 3\}$	✓ endpoints/eindpunte A
		✓ correct notation/
		korrekte notasie A
		(2)
		[25]

FINANCE, GROWTH AND DECAY EXEMPLAR 2018

QUESTION 5

5.1	$i_{\text{eff}} = \left(1 + \frac{i}{m}\right)^m - 1$		
	$i_{eff} = \left(1 + \frac{0.072}{2}\right)^2 - 1$	✓Correct substitution	
	≈ 0,073296 ∴ annual effective interest rate is 7,33%	√Simplification	
	annual effective interest rate is 7,3376	✓Effective rate as %	(3)
5.2	$A = P(1-i)^n$		(-)
3.2	A = P(1-1)	√Correct formula	I
	70 = 220(1-0,08)"	✓ Correct substitution	I
	$\frac{7}{22}$ = $(0,92)^n$	✓Simplified power form	I
	22 - (0,92)	- Simplifica power form	
	$n = \log_{0.92} \frac{7}{23}$		I
	n = 105 _{0,92} 22	✓Using logarithms	I
	∴ n≈13,73363166		
	It will take approximately 14 minutes.	✓Nearest minute	(5)
5.2.2	Notes of Astronomy		(5)
5.2.2	Value of A after 3 years:	✓Correct formula	I
	$A = P(1+i)^n$	✓ Correct formula	I
	$A = R150000 \left(1 + \frac{10,5\%}{4}\right)^{3/4}$	✓Correct substitution	
		✓ R204705,40	I
	=R.204705,40		
	Value of P after withdrawal:		- 1
	P=R204 705,40-R30 000 =R174 705,40	✓P=R174705,40	
	Amount received at the end of the investment period:		
	$A = R174705, 40 \left(1 + \frac{10,5\%}{4}\right)^{2 \times 4}$	✓Correct substitution	
	∴ A = R 214 947, 15	√Final amount	
	A=K217 37/, 13	- a mai tunotunt	(6)
			[14]
$\overline{}$		ļ	1

NOV 2018

5.1	$i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m - 1$	(57)
	$0.067 = \left(1 + \frac{i_{\text{nom}}}{12}\right)^{12} - 1$	✓SF
	$1.067 - \left(1 + \frac{i_{nom}}{12}\right)^{12}$	$\sqrt{\sqrt[4]{1,067}} = \left(1 + \frac{i_{nom}}{12}\right)$ CA
	$\frac{\sqrt[3]{1,067} - \left(1 + \frac{i_{nom}}{12}\right)}{i_{nom} - 12\left(\sqrt[3]{1,067} - 1\right) \approx 0.065}$	$\sqrt{12(\sqrt[12]{1,067}-1)} = i_{nom} \text{ CA}$
	∴nominal interest rate is/no min ale rentekoers is 6,5 %	√ 6,5 % CA (Accept/aanvaar 0 ,065)
5.2.1	P130 000	(4) ✓ R120 000 A
5.2.1	R120 000	V K120 000 A (1)
5.2.2	Reducing balance method/vermnderde balans-metode:	
	$A = P(1-i)^n$	
	120000 = 240000(1-16%)"	✓ SF
	0,5 = (0,84)"	$\sqrt{0.5} = (0.84)^n$ CA
	$n = \log_{0.84} 0.5$	√ logs/ logs CA
	∴n≈3,98	√ n = 3.98 CA
	∴it will take 4 years/dit sal 4 jaar neem	√ n = 3,98 CA √ R
	OR/OF	OR/OF
	Straight line - method/ Re guitlynmetode:	
	$A = P(1-i\times n)$	
	$120000 = 240000(1-16\% \times n)$	√ SF
	-0.5 = (-16% n)	√ -0,5 = (-16% n) CA
	$n = \frac{-0.5}{160}$	✓ making n the subject/
	-10%	maak n de onderwerp CA
	n≈3,125	✓ n = 3,125 CA
	∴ it will take 3 years/dit sal 3 jaar neem	✓ R
		(5)

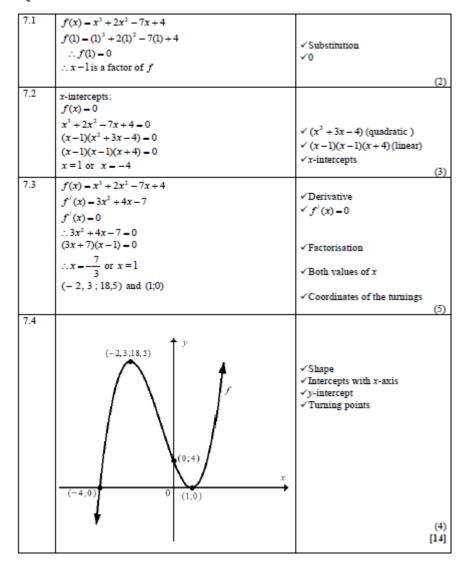
5.3	For the first 4 years/Vir eerste 4 jaar:	
	A = P (1+i) ⁿ = 40000 $\left(1 + \frac{11,2\%}{4}\right)^{4\times4}$ ∴ A ≈ R 62 222,83 For the last 3 years/Vîr laaste 3 jaar : A = 62 222,83(1 + 13%) ³ ≈ R 89 781,15	✓ value of/waarde van i and/en n A ✓ SF CA ✓ 62 222, 83 CA ✓ SF CA ✓ 89 781 ,15 CA OR/OF OR/OF
	OR/OF	OR OF
	$A = P(1+i)^{n} \cdot (1+i)^{n}$ $= 40000 \left(1 + \frac{11,2\%}{4}\right)^{4\times4} \cdot \times (1+13\%)^{3}$ $\approx R.89.781,15$	✓ A = P(1+i)"·(1+i)" M ✓ value of/waarde van i and/en n ✓ value of/waarde va i and/en n ✓ SF CA ✓ 89 781 .15 CA (5)
		[15]

NOV 2019

	711 000	(manusahari mana
5.1.1	R11 000	✓ new value/ nuwe waarde A
		(1)
5.1.2	A-R5 500 P-R11 000 n-5 i-?	(1)
	A = P(1-in)	
	R5 500 = R11 000 $(1-i\times(5))$	✓SF CA
	75.500	
	R5 500 -1	
	$i = \frac{\frac{R5500}{R11000} - 1}{1000}$	✓making i the subject/
	-)	maak i die onderwerp
	- 0,10	CA
	=10%	✓ interest rate/ rentekoers
		CA
		AO: Full marks/Volpunte
		(3)
5.2	A= P(1+i)"	(-)
	· /	
#	273 = 200(1 + 3,5%)"	✓SF A
	273 200 - (1,035)"	√S CA
	200 - (1,033)	
	log 273	
	$n = \frac{\log \frac{273}{200}}{\log (1,035)} \text{ OR}/OF \ n = \log_{1,035} \frac{273}{200}$	√ log property/ eienskap
	log (1,035)	CA
	≈ 9,04 years/jaar	√value of/waarde van n
	∴ the year 2018 / die jaar 2018	CA
		✓ correct year/
		korrekte jaar CA
	OR/OF	OR/OF
	$A_1 = R200 (1+3,5\%)^1 \approx R207$	✓SF A
	$A_2 = R200 (1+3,5\%)^2 \approx R214,25$	√S CA
	-	
		√SF A
	$A_9 = R200 (1+3,5\%)^9 \approx R272,58$	√S CA
	$A_{10} = R200 (1+3,5\%)^{10} \approx R282,12$	
		✓ correct year/ korrekte
	:. the year 2018 / die jaar 2018	jaar CA
		NOTE/NOTA:
		Accept/Aanvaar 2019
		NPR
		(5)

5.3	Value of the investment after initial deposit/		
	waarde van die belegging na die aanvangs deposito:		
#			
	$A = P(1+i)^n$		
1			
1	$= R 293 000 \left(1 + \frac{6,7\%}{4}\right)^{2:4}$	✓SF	A
1	= K293 000 1+	. 31	-
1	(4)	√S.	
1	≈ R 334 642,4791	V 5	CA
1	*		
1	R334 642,4791+R95 000 = R429 642,4791	√ S	CA
1	1054 042,4751 1105 000 - 10425 042,4751		
1			
1	Value of the investment after adding/waarde van die belegging		
	na byvoeging van R95 000 :		
1			
1	(6.7%) ^{2×4}		.
1	$=429\ 642,4791\left(1+\frac{6,7\%}{4}\right)^{26}$	✓SF	A
	(4)		
1	≈ R490 705,2026	√S	CA
1	*		
1			
1	Value of the investment after change in interest rate/waarde van		
1	die belegging na verandering van rentekoers :		
1			
1	$= R490705,2026 \left(1 + \frac{7.5\%}{12}\right)^{4.12}$		
1	12	√ value of i and	
1	(== 7	waarde van i e	
1	≈ R661 764,62 > R660580		A
1	~ R001 /04,02 > R000380	√S	CA
1			
1	∴ Yes she has accumulated sufficient funds. Ja, sy het genoeg	✓ conclusion/	
1	fondse geakkumuleer	gevolgtrekking (CA
1		Service and a	
1	OR/OF	OR/OF	
1			.
1	[(6.70()214]	✓ M	A
1	$A = \left[293\ 000 \left(1 + \frac{6,7\%}{4} \right)^{2x4} + 95\ 000 \right]$	√√SF	A
1	4)	√ value of i and	
1		waarde van i er	2 m
1	$\times \left(1 + \frac{6,7\%}{4}\right)^{2 \times 4} \left(1 + \frac{7,5\%}{12}\right)^{4 \times 12}$		A
1	(17 4) (17 12)	✓ adding/byvoegi	ne
1	≈ R 661 764,62 > R 660 580	R95 000	A
1	≈ R 001 704, 02 > R 000 380	✓change of rate/	
		_	
		verandering va	
		koers	A
		_	CA
1	Yes she has accumulated sufficient funds./	✓ conclusion/	
1	Ja, sy het genoeg fondse geakkumuleer	gevolgtrekking (CA
1	out of the Senoes Journal Sentember		
1			
		OR/OF	
	OR/OF	OKOF	

A = R293 000 $\left(1 + \frac{6.796}{4}\right)^{4.4} \cdot \left(1 + \frac{7.596}{12}\right)^{4.12}$ + R95 000 $\left(1 + \frac{6.796}{4}\right)^{2.4} \left(1 + \frac{7.596}{12}\right)^{4.12}$ $+ R95 000 \left(1 + \frac{6.796}{4}\right)^{2.4} \left(1 + \frac{7.596}{12}\right)^{4.12}$ \times Value of i and n/v waarde v an i on n A i adding/by voeging R95 000 with interests/mer renne i A i conclusion/ i gevolgtrekking i CA OR/OF P = R660 580 $\left(1 + \frac{6.796}{4}\right)^{-4.2} \cdot \left(1 + \frac{7.596}{12}\right)^{-4.12}$ $- R95 000 \left(1 + \frac{6.796}{4}\right)^{2.4} \left(1 + \frac{7.596}{12}\right)^{4.12}$ i OR/OF i			
$ \times \text{R 661 764, 62} > \text{R 660 580} $ ∴ Yes she has accumulated sufficient funds.\/ \			
$ \times \text{R 661 764, 62} > \text{R 660 580} $ ∴ Yes she has accumulated sufficient funds.\/ \	$+ R95 000 \left(1 + \frac{6,7\%}{4}\right)^{264} \left(1 + \frac{7,5\%}{12}\right)^{442}$	✓ M A A	
A \ adding/byvoeging \ R95 000 with interests/met rente \ \ \times \ R 661 764, 62 \ > R 660 580 \ \therefore \ Yes she has accumulated sufficient funds.\\ \text{Ja, ty het genoeg fondse geakkumuleer} \\ \text{P} = R 660 580 \left(1 + \frac{6.796}{4}\right)^{-4.2} \left(1 + \frac{7.596}{12}\right)^{-6.12} \\ \text{P} = R 660 580 \left(1 + \frac{6.796}{4}\right)^{-4.2} \left(1 + \frac{7.596}{12}\right)^{-6.12} \\ \text{P} = R 860 580 \left(1 + \frac{6.796}{4}\right)^{-4.2} \left(1 + \frac{7.596}{12}\right)^{-6.12} \\ \text{P} = R 860 580 \left(1 + \frac{6.796}{4}\right)^{-4.2} \left(1 + \frac{7.596}{12}\right)^{-6.12} \\ \text{P} = R 860 580 \left(1 + \frac{6.796}{4}\right)^{-4.2} \left(1 + \frac{7.596}{12}\right)^{-6.12} \\ \text{P} = R 822 547, 91 \left(1 + \frac{2.93}{2.900}\text{SO00} \text{with interests} \text{A} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(' / (' - /	√ value of i and n/	
R95 000 with interests/met rente A × R 661 764, 62 > R 660 580 ∴ Yes she has accumulated sufficient funds./ Ja, zy het genoeg fondze geakkumuleer OR/OF $P = R660 580 \left(1 + \frac{6.7\%}{4}\right)^{-4.2} \cdot \left(1 + \frac{7.5\%}{12}\right)^{-6.12}$ $- R95 000 \left(1 + \frac{6.7\%}{4}\right)^{2.4} \left(1 + \frac{7.5\%}{12}\right)^{4.12}$ $- R95 000 \left(1 + \frac{6.7\%}{4}\right)^{2.4} \left(1 + \frac{7.5\%}{12}\right)^{4.12}$ $\sim R 282 547, 91 < R 293 000$ Yet she has accumulated sufficient funds./ Ja, zy het genoeg fondze geakkumuleer OR/OF $1 + i_{eff} = \left(1 + \frac{i_{max}}{m}\right)^m = \left(1 + \frac{6.7\%}{4}\right)^4 \approx 0,068$ 2 years/ jaar: $A = R429 642, 48 (1 + 0,068)^2 \approx R490 705, 20$ $5 - 8 \text{ years/ jaar:}$ $A - R490 705, 20 \left(1 + \frac{7.5\%}{12}\right)^{4.12} \approx R661 764,62 > R660580$ ∴ Yes she has accumulated sufficient funds./ Ja, zy het genoeg fondze geakkumuleer A change of rate/ verandering van koerz A change of rate/ verandering van koerz A change of rate/ verandering van koerz A change of rate/ verandering van koerz A change of rate/ verandering van koerz A change of ind n/ waarde van i en n S change of rate/ verandering van koerz A change of sate/ verande		waarde van i en n A	
interests/mat rente A A change of rate/ Vers she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer OR/OF P = R660 580 $\left(1 + \frac{6.7\%}{4}\right)^{-4/2} \cdot \left(1 + \frac{7.5\%}{12}\right)^{-6/12}$ OR/OF P = R660 580 $\left(1 + \frac{6.7\%}{4}\right)^{-4/2} \cdot \left(1 + \frac{7.5\%}{12}\right)^{-6/12}$ OR/OF A conclusion/ gevolgtrekking CA OR/OF VM A VSF A Vslue of i and n' waarde van i en n A value of i and n' waarde van i en n A value of i and n' waarde van i en n A conclusion/ gevolgtrekking CA OR/OF A conclusion/ R95 000 with interests A Subtracting R95 000 with interests A Subtracting R95 000 with interests A Change of rate/ verandering van A conclusion/ gevolgtrekkingCA OR/OF 1 + $i_{eff} = \left(1 + \frac{i_{max}}{m}\right)^m = \left(1 + \frac{6.7\%}{4}\right)^4 \approx 0.068$ 2 years/jaar: A = R429 642, 48 4th year/jaar: A = R429 642, 48 (1+0.068) ² ≈ R490 705, 20 SF A S CA SF CA			
≈ R 661 764, 62 > R 660 580 ∴ Yes she has accumulated sufficient funds.\(\) Ja, sy het genoeg fondse geakkumuleer OR/OF P = R 660 580 $\left(1 + \frac{6,7\%}{4}\right)^{-4/2} \cdot \left(1 + \frac{7,5\%}{12}\right)^{-4/2} \cdot \left(1 + \frac{7,5\%}{12}\right)^$			
Yes she has accumulated sufficient funds. $Ja. sy het genoeg fondse geakkumuleer$ OR/OF OR/OF OR/OF OR/OF $- R95 000 \left(1 + \frac{6,796}{4}\right)^{-4x/2} \cdot \left(1 + \frac{7,596}{12}\right)^{-4x/2}$ $- R95 000 \left(1 + \frac{6,796}{4}\right)^{2x/4} \left(1 + \frac{7,596}{12}\right)^{4x/2}$ $- R95 000 \left(1 + \frac{6,796}{4}\right)^{2x/4} \left(1 + \frac{7,596}{12}\right)^{4x/2}$ $\times R 282 547, 91 < R 293 000$ Yes she has accumulated sufficient funds. $Value of i and n/waarde van i en n$ A value of i and n/waarde van i en n A value of i and n/waarde van i en n A value of i and n/waarde van i en n A change of rate/verandering van koers A CA S CA Conclusion/ gevolgrekking CA Conclusion/ gevolgrekking CA CA S CA CA COR/OF A Value of i and n/waarde van i en n A S CA CA COR/OF S CA CA COR/OF A Value of i and n/waarde van i en n A S CA CA COR/OF S CA CA COR/OF A Value of i and n/waarde van i en n A CA CA COR/OF A Value of i and n/waarde van i en n A CA CA CA CA CA CA CA CA CA	≈ R 661 764, 62 > R 660 580		
OR/OF OR/OF OR/OF OR/OF OR/OF $- R9600 580 \left(1 + \frac{6,796}{4}\right)^{-4x^2} \cdot \left(1 + \frac{7,596}{12}\right)^{-4x/12}$ $- R95 000 \left(1 + \frac{6,796}{4}\right)^{2x/4} \left(1 + \frac{7,596}{12}\right)^{4x/12}$ $\sim R 282 547, 91 < R 293 000$ $For she has accumulated sufficient funds. / Ja, sy het genoeg fondse geakkumuleer OR/OF 1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,796}{4}\right)^4 \approx 0,068 2 \text{ years / jaar:} A = R 429 642, 48 4 \text{ th year / jaar:} A = R 490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4x/2} \approx R 661 764,62 > R 660580 \therefore \text{ Yes she has accumulated sufficient funds.} \approx R 282 547, 91 < R 293 000 R 293 000 with interests A visible rests A visible $	Yes she has accumulated sufficient funds./	_	
OR/OF $P = R660 580 \left(1 + \frac{6,7\%}{4}\right)^{-6x^2} \cdot \left(1 + \frac{7,5\%}{12}\right)^{-6x/12}$ $- R95 000 \left(1 + \frac{6,7\%}{4}\right)^{2x/4} \left(1 + \frac{7,5\%}{12}\right)^{4x/12}$ $\sim R 282 547, 91 < R 293 000$ $Yes she has accumulated sufficient funds./$ $Ja, sy het genoeg fondse geakkumuleer$ OR/OF $1 + i_{eff} = \left(1 + \frac{i_{now}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ 2 years/jaar: $A = R429 642, 48$ 4th year/jaar: $A = R429 642, 48 (1 + 0,068)^2 \approx R490 705, 20$ $S = 8 \text{ years/jaar:}$ $A = R490 705, 20 \left(1 + \frac{7,5\%}{12}\right)^{4x/2} \approx R661 764,62 > R660580$ $\therefore \text{ Yes she has accumulated sufficient funds.}/$ $Ja, sy het genoeg fondse geakkumuleer$ $A = R660 580 \left(1 + \frac{6,7\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{6,7\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{6,7\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R661 764,62 > R660580$ $A = R660 580 \left(1 + \frac{7,5\%}{4}\right)^{4x/2} \approx R660 580 \left(1 + 7,5$	Ja, sy het genoeg fondse geakkumuleer		
OR/OF $P = R660 580 \left(1 + \frac{6,7\%}{4}\right)^{-6.2} \cdot \left(1 + \frac{7,5\%}{12}\right)^{-6.12} $ $- R95 000 \left(1 + \frac{6,7\%}{4}\right)^{2.64} \left(1 + \frac{7,5\%}{12}\right)^{4.12} $ $\sim R 282 547, 91 < R 293 000$ $Yes she has accumulated sufficient funds./$ $Ja, sy het genoeg fondse geakkumuleer$ OR/OF $1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ 2 years/jaar: $A = R (1 + i)^m = R (293 000 (1 + 0,068)^2 + R95 000$ $\approx R (296 42,48) (1 + 0,068)^2 \approx R490 705,20$ $5 - 8 \text{ years/jaar:}$ $A = R (490 705, 20 \left(1 + \frac{7,5\%}{12}\right)^{4.12} \approx R661 764,62 > R660580$ $\therefore \text{ Yes she has accumulated sufficient funds.}$ $A = R (490 705, 20 \left(1 + \frac{7,5\%}{12}\right)^{4.12} \approx R661 764,62 > R660580$ $\Rightarrow R (296 42,48) = R661 764,62 > R660580$ $\Rightarrow R (296 42,4$			
OR/OF $P = R660 580 \left(1 + \frac{6,796}{4}\right)^{-4/2} \cdot \left(1 + \frac{7,596}{12}\right)^{-4/12} $ $- R95 000 \left(1 + \frac{6,796}{4}\right)^{2/4} \left(1 + \frac{7,596}{12}\right)^{4/12} $ $\sim R 282 547, 91 < R 293 000$ $You she has accumulated sufficient funds. / Ja, sy het genoeg fondse geakkumuleer OR/OF 1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,796}{4}\right)^4 \approx 0,068 2 \text{ years/jaar:} A = R429 642, 48 4 + R429 642, 48 A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580 A = R429 \text{ ond } seakkumuleer Reference (A) $			
$P = R660 580 \left(1 + \frac{6,796}{4}\right)^{4/2} \cdot \left(1 + \frac{7,596}{12}\right)^{4/12}$ $- R95 000 \left(1 + \frac{6,796}{4}\right)^{2/4} \left(1 + \frac{7,596}{12}\right)^{4/12}$ $- R95 000 \left(1 + \frac{6,796}{4}\right)^{2/4} \left(1 + \frac{7,596}{12}\right)^{4/12}$ $\sim R 282 547, 91 < R 293 000$ $Yes she has accumulated sufficient funds. /$ $Ja, sy het genoeg fondse geakkumuleer$ OR/OF $1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,796}{4}\right)^4 \approx 0,068$ 2 years/jaar: $A = P(1+i)^m = R293 000 (1+0,068)^2 + R95 000$ $\approx R 429 642, 48$ 4th year/jaar: $A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580$ $A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580$ $A = Value of i and n/waarde van i en n$ $A = Value of i and n/waarde van i en n$ $A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580$ $A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580$ $A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580$ $A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580$ $A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580$ $A = R490 705, 20 \left(1 + \frac{7,596}{12}\right)^{4/12} \approx R661 764,62 > R660580$	OR/OF		
$- R95\ 000 \left(1 + \frac{6,7\%}{4}\right)^{2c4} \left(1 + \frac{7,5\%}{12}\right)^{4c12} \qquad \checkmark M \qquad A \\ \checkmark \lor SF \qquad A \\ \lor \text{value of } i \text{ and } n/ \\ \text{waarde van } i \text{ en } n \\ A \end{cases}$ $= R\ 282\ 547\ , 91 < R\ 293\ 000$ $Yes \text{ she has accumulated sufficient funds.}/$ $Ja, \text{ sy het genoeg fondse geakkumuleer}$ OR/OF $1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ 2 years/jaar: $A = P(1+i)^n = R293\ 000(1+0,068)^2 + R95\ 000$ $\approx R\ 429\ 642,48$ 4th year/jaar: $A = R429\ 642,48\ (1+0,068)^2 \approx R490\ 705,20$ $5 - 8 \text{ years/jaar:}$ $A = R490\ 705,20 \left(1 + \frac{7,5\%}{12}\right)^{4s12} \approx R661\ 764,62 > R660580$ $\therefore \text{ Yes she has accumulated sufficient funds.}/$ $Ja, \text{ sy het genoeg fondse geakkumuleer}$ $\checkmark M \qquad A \\ \checkmark \lor SF \qquad A \\ \lor \text{ change of rate/}$ $\lor \text{ verandering van }$ $\land \text{ bord} \qquad \text{ sevolgtrekkingCA}$ OR/OF $\checkmark \text{ SF} \qquad A \\ \lor \text{ S} \qquad \text{ CA}$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad A \\ \lor \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad \text{ CA}$ $\checkmark \text{ SF} \qquad CA$ $\checkmark \text{ S} \qquad CA$			
$- R95\ 000 \left(1 + \frac{0.776}{4}\right) \left(1 + \frac{7.756}{12}\right)$ $= R\ 282\ 547\ , 91 < R\ 293\ 000$ $= R\ 282\ 547\ , 91 < R\ 293\ 000$ $= R\ 293\ 000 $ $= R\ 490\ 705\ , 20 $ $= R\ 490\ , 20 $ $= R\ 4$	$P = R660 580 \left(1 + \frac{6,7\%}{4}\right)^{-4\times2} \cdot \left(1 + \frac{7,5\%}{12}\right)^{-4\times12}$	OR/OF	
	(6.70¢\2×4 (7.50¢\4×12	✓ M A	
	- R95 000 (1+0,7%) (1+7,3%)	✓✓SF A	
	(4) (12)		
		waarde van i en n	
≈ R 282 547, 91 < R 293 000 Fes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer OR/OF $1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ OR/OF 2 years/jaar: $A = P(1+i)^m = R293\ 000(1+0,068)^2 + R95\ 000$ $\approx R 429\ 642,48$ 4th year/jaar: $A = R429\ 642,48\ (1+0,068)^2 \approx R490\ 705,20$ $5 - 8\ years/jaar$ $A = R490\ 705,20\left(1 + \frac{7,5\%}{12}\right)^{4+12} \approx R661\ 764,62 > R660580$ ∴ Yes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer R95\ 000\ with interests A < change of rate/ verandering van koers A		A	
≈ R 282 547, 91 < R 293 000 Yes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer OR/OF $1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ 2 years/jaar: $A = P(1+i)^m = R293 000 (1+0,068)^2 + R95 000$ $\approx R 429 642,48$ 4th year/jaar: $A = R429 642,48 (1+0,068)^2 \approx R490 705,20$ $5 - 8 \text{ years/jaar:}$ $A = R490 705,20 \left(1 + \frac{7,5\%}{12}\right)^{4\times12} \approx R661 764,62 > R660580$ ∴ Yes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer			
Yes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer OR/OF $1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ OR/OF 2 years/jaar: $A = P(1+i)^n = R293 \ 000 \ (1+0,068)^2 + R95 \ 000$ $\approx R429 \ 642,48$ 4th year/jaar: $A = R429 \ 642,48 \ (1+0,068)^2 \approx R490 \ 705,20$ $5 - 8 \text{ years/jaar:}$ $A = R490 \ 705,20 \ \left(1 + \frac{7,5\%}{12}\right)^{4\times 12} \approx R661 \ 764,62 > R660580$ ∴ Yes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer ✓ change of rate/ verandering van koers A S CA ✓ conclusion/ gevolgtrekkingCA OR/OF ✓ SF A ✓ S CA ✓ S CA ✓ SF CA ✓ S CA ✓ S CA	≈ R 282 547,91 < R 293 000		
$Ja, sy het genoeg fondse geakkumuleer \\ OR/OF \\ 1+i_{eff}=\left(1+\frac{i_{nom}}{m}\right)^m = \left(1+\frac{6,7\%}{4}\right)^4 \approx 0,068 \\ 2 \text{ years/jaar:} \\ A = P(1+i)^m = R293\ 000\left(1+0,068\right)^2 + R95\ 000 \\ \approx R429\ 642,48 \\ 4\text{th year/jaar:} \\ A = R429\ 642,48\ (1+0,068)^2 \approx R490\ 705,20 \\ 5-8 \text{ years/jaar:} \\ A = R490\ 705,20 \left(1+\frac{7,5\%}{12}\right)^{4\times 12} \approx R661\ 764,62 > R660580 \\ \therefore \text{ Yes she has accumulated sufficient funds.} \\ Ja, sy het genoeg fondse geakkumuleer \\ \end{aligned} $	Yes she has accumulated sufficient funds./		
OR/OF $1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ 2 years/jaar: $A = P(1+i)^m = R293 \ 000 \ (1+0,068)^2 + R95 \ 000$ $\approx R429 \ 642,48$ 4th year/jaar: $A = R429 \ 642,48 \ (1+0,068)^2 \approx R490 \ 705,20$ $5 - 8 \ \text{ years/jaar:}$ $A = R490 \ 705,20 \ \left(1 + \frac{7,5\%}{12}\right)^{4\times 12} \approx R661 \ 764,62 > R660580$ $\Rightarrow R60580$		_	
$1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ 2 years/jaar: $A = P(1+i)^m = R293 \ 000 \ (1+0,068)^2 + R95 \ 000$ $\approx R429 \ 642,48$ 4th year/jaar: $A = R429 \ 642,48 \ (1+0,068)^2 \approx R490 \ 705,20$ $5 - 8 \text{ years/jaar:}$ $A = R490 \ 705,20 \ \left(1 + \frac{7,5\%}{12}\right)^{4\times12} \approx R661 \ 764,62 > R660580$ $\therefore \text{ Yes she has accumulated sufficient funds./}$ $Ja, sy \text{ het genoeg fondse geakkumuleer}$ $\sqrt{\text{conclusion/}} \text{ gevolgtrekkingCA}$ $\sqrt{\text{SF}} \qquad A \\ \sqrt{\text{S}} \qquad CA$ $\sqrt{\text{S}} \qquad CA$ $\sqrt{\text{S}} \qquad CA$	ou, sy nei genoeg jonuse geunnuntateer	_	
$1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m = \left(1 + \frac{6,7\%}{4}\right)^4 \approx 0,068$ 2 years/jaar: $A = P(1+i)^n = R293 \ 000 \ (1+0,068)^2 + R95 \ 000$ $\approx R429 \ 642,48$ 4th year/jaar: $A = R429 \ 642,48 \ (1+0,068)^2 \approx R490 \ 705,20$ $5 - 8 \text{ years/jaar:}$ $A = R490 \ 705,20 \ \left(1 + \frac{7,5\%}{12}\right)^{4\times12} \approx R661 \ 764,62 > R660580$ $\therefore \text{ Yes she has accumulated sufficient funds./}$ $Ja, sy \text{ het genoeg fondse geakkumuleer}$ $\Rightarrow \text{ conclusion/}$ gevolgtrekkingCA $\Rightarrow \text{ SF}$ CA $\Rightarrow \text{S}$ CA $\Rightarrow \text{S}$ CA $\Rightarrow \text{S}$ CA $\Rightarrow \text{S}$ CA	OR/OF	√S CA	
2 years/jaar: $A = P(1+i)^n = R293\ 000\ (1+0,068)^2 + R95\ 000$ $\approx R429\ 642,48$ 4th year/jaar: $A = R429\ 642,48\ (1+0,068)^2 \approx R490\ 705,20$ $5-8\ years/jaar$: $A = R490\ 705,20\ \left(1+\frac{7,5\%}{12}\right)^{4*12} \approx R661\ 764,62 > R660580$ $\Rightarrow R660580$		✓ conclusion/	
2 years/jaar: $A = P(1+i)^n = R293\ 000\ (1+0,068)^2 + R95\ 000$ $\approx R429\ 642,48$ 4th year/jaar: $A = R429\ 642,48\ (1+0,068)^2 \approx R490\ 705,20$ $5-8\ years/jaar$: $A = R490\ 705,20\ \left(1+\frac{7,5\%}{12}\right)^{4*12} \approx R661\ 764,62 > R660580$ $\Rightarrow R660580$	$1+i_{-}=\left(1+\frac{i_{\text{now}}}{1+i_{-}}\right)^{-}=\left(1+\frac{6,7\%}{1+i_{-}}\right)\approx 0.068$	gevolgtrekkingCA	
2 years/jaar: $A = P(1+i)^n = R293\ 000(1+0,068)^2 + R95\ 000$ $\approx R429\ 642,48$ 4th year/jaar: $A = R429\ 642,48\ (1+0,068)^2 \approx R490\ 705,20$ $5 - 8\ years/jaar$: $A = R490\ 705,20\left(1+\frac{7,596}{12}\right)^{4.612} \approx R661\ 764,62 > R660580$ ∴ Yes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer ✓ SF CA ✓ SF CA ✓ Value of i and n/ waarde van i en n A	1 1 m) = (1 m) = (1 4) = 0,000	OP/OF	
$\approx R.429 642,48$ 4th year/jaar: $A = R.429 642,48 (1+0.068)^2 \approx R.490 705,20$ $5 - 8 \text{ years/jaar:}$ $A = R.490 705,20 \left(1 + \frac{7.5\%}{12}\right)^{4.42} \approx R.661 764,62 > R.660580$ $\therefore \text{ Yes she has accumulated sufficient funds.}$ $Ja, sy het genoeg fondse geakkumuleer$ $\Rightarrow S$ $\Rightarrow S$ $\Rightarrow CA$ $\Rightarrow S$ $\Rightarrow CA$ $\Rightarrow S$ $\Rightarrow CA$ $\Rightarrow C$			
≈ R 429 642, 48 4th year/jaar: A = R 429 642, 48 $(1+0,068)^2 \approx R 490 705,20$ 5 - 8 years/jaar: A = R 490 705, 20 $\left(1+\frac{7,5\%}{12}\right)^{4\times12} \approx R 661 764,62 > R 660580$ ∴ Yes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer × SF CA × S CA ✓ value of i and n / waarde van i en n A	$A = P(1+i)'' = R293\ 000(1+0.068)' + R95\ 000$		
A = R.429 642, 48 $(1+0.068)^2 \approx R.490 705, 20$ $5 - 8 \text{ years/jaar.}$ A = R.490 705, $20\left(1+\frac{7.5\%}{12}\right)^{4\times12} \approx R.661 764, 62 > R.660580$ $\therefore \text{ Yes she has accumulated sufficient funds.}$ $Ja, sy het genoeg fondse geakkumuleer$ $\Rightarrow \text{ SF} \qquad \text{CA}$ $\forall \text{ SF} \qquad \text{CA}$ $\forall \text{ S} \qquad \text{CA}$ $\forall \text{ value of } i \text{ and } n/\text{ waarde van } i \text{ en } n$	≈ R 429 642,48	✓S CA	
$A = R429 642, 48 (1+0,008) \approx R490 705, 20$ $5 - 8 \text{ years/ jaar.}$ $A = R490 705, 20 \left(1 + \frac{7,5\%}{12}\right)^{4\times12} \approx R661 764, 62 > R660580$ $\therefore \text{ Yes she has accumulated sufficient funds.}$ $Ja, sy het genoeg fondse geakkumuleer$ $\checkmark \text{ value of } i \text{ and } n/\text{ waarde van } i \text{ en } n$		/ STE C1	
5 - 8 years/jaar: A = R490 705, $20\left(1+\frac{7,5\%}{12}\right)^{4\times12} \approx R661 764,62 > R660580$ \checkmark S CA \therefore Yes she has accumulated sufficient funds. Ja, sy het genoeg fondse geakkumuleer \checkmark value of i and $n/$ waarde van i en n	$A = R429 642,48 (1+0,068)^2 \approx R490 705,20$		
∴ Yes she has accumulated sufficient funds. Ja, sy het genoeg fondse geakkumuleer A	5 – 8 years/ <i>jaar</i> :	· S CA	
∴ Yes she has accumulated sufficient funds./ Ja, sy het genoeg fondse geakkumuleer A	$A = R490 705, 20 \left(1 + \frac{7,5\%}{12}\right)^{4:12} \approx R661 764,62 > R660580$	✓S CA	
Ja, sy het genoeg fondse geakkumuleer A	The shall be assembled a 20 to 20 to 1	√ value of i and n/	
1 1 1		waarde van i en n	
OR/OF ✓ S CA	OR/OF	✓S CA	


$A = P(1+i)^n$		✓ conclusion gevolgtrei OR/0	thing CA
$A_0 = R293\ 000 \left(1 + \frac{0,067}{4}\right)^{4\times4}$			
≈ R 382 203,3749		✓SF	A
$A_i = R382\ 203,3749 \left(1 + \frac{0,075}{12}\right)^{4 \times 12}$		√S	CA
≈ R 515 439,147		✓SF	A
$A_2 = R95\ 000 \left(1 + \frac{0,067}{4}\right)^{2x4}$		✓S	CA
≈R108 501,8277			
$A_3 = R108 501,8277 \left(1 + \frac{0,075}{12}\right)^{4 \times 12}$		√S	CA
≈R146 325,4728		✓ value of waarde va	
A ₁ + A ₃ ≈ R661 764,62 > R660 580		waarae ve	A A
Yes she has accumulated sufficient fur	ads./		
Ja, sy het genoeg fondse geakkumulee.	•	45	61
	NOTE/NOTA: 1) Max. 4 marks if Simp Maks 4 punte indien e 2) Max. 2 marks if any l Maks 2 punte indien e	<i>nkelvoudige re</i> Depreciation i	ente is used./
			(8) [17]

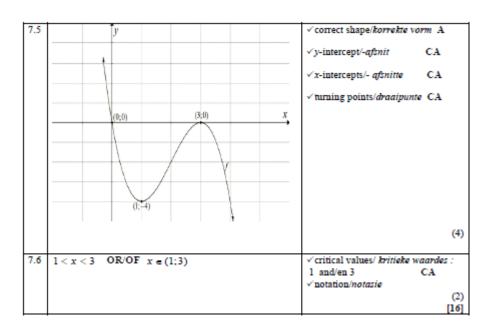
DIFFERENTIAL CALCULUS EXEMPLAR 2018

QUESTION 6

6.1	$f(x) = 2x^2 - 3$	
	Average gradient = $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$ = $\frac{[2(1)^2 - 3] - [2(-2)^2 - 3]}{1 - (-2)}$ = $\frac{-1 - 5}{3}$	✓Corresponding y-value ✓Corresponding y-value ✓Substitution in formula ✓Simplification (4)
6.2	$f(x) = 4 - 3x$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{[4 - 3(x+h)] - (4 - 3x)}{h}$ $= \lim_{h \to 0} \frac{4 - 3x - 3h - 4 + 3x}{h}$ $= \lim_{h \to 0} \frac{-3h}{h}$	✓Definition ✓Substitution in the definition ✓Simplification (removing brackets)
	$\lim_{h\to 0} (-3)$ = -3	✓Simplification (division) ✓Simplification (5)
6.3	$y = \frac{2}{x^3} + \sqrt{x}$ $y = 2x^{-3} + x^{\frac{1}{2}}$ $\frac{dy}{dx} = -6x^{-4} + \frac{1}{2}x^{-\frac{1}{2}}$	$\sqrt{2}x^{-3}$ $\sqrt{x^{\frac{1}{2}}}$ $\sqrt{-6}x^{-4}$ $\sqrt{\frac{1}{2}}x^{-\frac{1}{2}}$ (4)
6.4	$g(x) = -x^{2} - x$ $g(2) = -(2)^{2} - 2 = -6$ The point of contact is $(2; -6)$ $g'(x) = -2x - 1$ $\therefore m_{ton} = g'(2) = -2(2) - 1 = -5$ $y = mx + c \qquad OR y - y_{1} = m(x - x_{1})$ $-6 = -5(2) + c \qquad OR y - (-6) = -5(x - 2)$ $c = 4 \qquad OR y + 6 = -5x + 10$ $\therefore y = -5x + 4$	✓ value of y ✓ m _{tan} = -5 ✓ Correct substitution ✓ Value of c (simplification) ✓ Equation (any form)
		[18]

QUESTION 7

QUESTION 8


8.1.1	After 2 hrs	
0.1.1	D(2) = $4+0.5(2)^2-0.25(2)^3$ m	✓Substituting 2
		✓Simplification
	- 4m	Simplification
		(2)
8.1.2	$D = 4 + 0.5t^2 - 0.25t^3$	
	$D'(t) = t - 0.75t^2$	✓ Derivative
	At 12:00 (3 hours later):	
	$D'(3) = (3) - 0.75(3)^2$	✓Substitution of 3
	= -3,75 m h ⁻¹	V Substitution of 5
	=-3,75mm	✓Simplified rate
		(3)
8.2.1	$P = -3v^2 + 30v$	✓ P=0
	Neither profit nor loss at $P = 0$	V F = 0
	$-3v^2 + 30v = 0$	√Factors
	-3v(v-10) = 0	
	$\therefore v = 0 \text{ or } v = 10$	
	$v = 10 \mathrm{km} \mathrm{h}^{-1}$	✓ Correct value of v
	v = 10km h	(3)
8.2.2	$P = -3v^2 + 30v$	✓ Derivative
	$\frac{dP}{dv} = -6v + 30 = 0$	✓Equating to 0
	$\frac{1}{dv} = -6v + 30 = 0$	- Equating to 0
	$\therefore v = 5 \text{km h}^{-1}$	✓ Value of v
	v=Janin	(3)
8.2.3	P_{max} (in R1000) = $-3(5)^2 + 30(5) = 75$	✓ Substitution
	OR R75 000	✓Profit in R1 000
	UK K/3 000	(2)
		[13]

NOV 2018

6.1	$f(x) = 7x - 2$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{[7(x+h) - 2] - (7x - 2)}{h}$ $= \lim_{h \to 0} \frac{7x + 7h - 2 - 7x + 2}{h}$ $= \lim_{h \to 0} \frac{7h}{h}$ $= \lim_{h \to 0} (7)$ $\therefore f'(x) = 7$	✓ definition/definisie A ✓ SF ✓ S CA ✓ S CA ✓ CA AO only one mark/slegs een punt Penalty of one mark incorrect notation
6.2.1	Penalty of only one mark only once for incorrect notation (la sub-questions 6.2.1, 6.2.2 & 6.2.3 Penaliseer slegs een punt vir foutiewe notasie (laaste stap) vir subvae 6.2.1, 6.2.2 & 6.2.3	Penaliseer een punt indien notasie foutief is. (5)
	$\frac{d}{dx}(\pi^2) = 0$	√0 A (1)
6.2.2	$D_{x}\left(x^{4} - \sqrt[3]{x}\right)$ $-D_{x}\left(x^{4} - x^{\frac{1}{3}}\right)$ $-4x^{3} - \frac{1}{3}x^{\frac{2}{3}}$	$\sqrt{\text{power form/magvorm}}$ $\sqrt{4x^3}$ A $\sqrt{\frac{1}{3}x^{-\frac{2}{3}}}$ CA (3)
6.2.3	$y = \frac{x^5 + 2}{x^2} - x^3 + 2x^{-2}$ $\frac{dy}{dx} = 3x^2 - 4x^{-3}$	$\checkmark x^{3}$ A $\checkmark 2x^{-2}$ A $\checkmark 3x^{2}$ CA $\checkmark -4x^{-3}$ CA (4)

6.3.1	$p(x) = x^3 + 1$ $p(2) = (2)^3 + 1 = k$ $\therefore k = 9$	✓ S ✓ 9 A
6.3.2	$p(x) = x^3 + 1$ $p'(x) = 3x^2$	✓ derivative/afgeleide A (1)
6.3.3	$p'(x) = 3x^{2}$ $m = 3(2)^{2}$ $= 12$ $y = 9 = 12(x - 2) \text{ OR / OF } 9 = 12(2) + c$ $y = 12x - 24 + 9 \qquad c = -15$ $\therefore y = 12x - 15 \qquad \therefore y = 12x - 15$	√gradient/gradient CA √SF CA
	OR/OF y -12x +15 = 0	√ y = 12x − 15 CA (3) [19]

•	STION//RELAGY		
	Q7.1: Penalty of ONE mark if intercepts not given as coordinates (refer also to Question 4}\		
	V 7.1: Penaliseer EEN punt indien afsnitte nie as koordinate g	gegee (verwys ook na Vraag 4)	
7.1	f(x) = -x(x-3)(x-3) x = 0 and/en $x = 3(0:0) and/en (3:0)$	√ (0;0) A √ (3;0) A	
		(2)	
7.2	f(x) = -x(x-3)(x-3) y = f(0) = -(0)(0-3)(0-3) = 0	√ 0 A (1)	
		Accept/Aanvaar: (0;0)	
7.3	f(x) = -x(x-3)(x-3) = -x(x ² -6x+9)	$\sqrt{-x(x^2-6x+9)}$ M A	
	OR/OF	OR/OF	
	$-(-x^2+3x)(x-3)$ OR/OF	$\sqrt{(-x^2+3x)(x-3)}$ M A	
	$-(x^2-3x)(-x+3)$	OR/OF	
	$\therefore f(x) = -x^3 + 6x^2 - 9x$	$\checkmark \checkmark (x^2 - 3x)(-x + 3)$ M A	
		(2)	
7.4	$f(x) = -x^3 + 6x^2 - 9x$ $f'(x) = -3x^2 + 12x - 9$	√ derivative/afgeleide M	
	$-3x^2 + 12x - 9 = 0$ $x^2 - 4x + 3 = 0$	√equating derivative to 0/ stel afgeleide gelyk aan 0 M	
	(x-3)(x-1)=0 $\therefore x=3 \text{ or/of } x=1$ $f(1)=-(1)^3+6(1)^2-9(1)=-4$	√factors/formula/faktore CA √both values of /beide waardes van x CA	
	(3;0) and/en (1; -4)	✓ both values of/beide waardes van y CA AO: Full marks/Volpunte	
		Coordinates of one turning point only: two marks/ Koordinate van een draaipunt slegs:twee punte	
		(5)	

8.1.1	$V = I \times b \times h$ = $3x(1,5)(1-x)$ OR/OF $V = 4,5x-4,5x^2$	√ formula/formule √ √ SF (3)
8.1.2	$V = 4,5x - 4,5x^{2}$ $\frac{dV}{dx} = 4,5 - 9x$ $4,5 - 9x = 0$ $9x = 4,5$ $\therefore x = 0,5$ OR/OF $x = -\frac{b}{2a}$ $= -\frac{4,5}{2(-4,5)}$ $= 0,5$	CA from Question/ Vraag 8.1.1 ✓ derivative/afgeleide M ✓ equating to 0/ stel gelyk aan 0 M ✓ value of/waarde van x CA OR/OF ✓ using a formula/gebruik 'n formule ✓ S ✓ value of/waarde van x CA
		(3)
8.2.1	$v(0) = 8 + 4(0) - (0)^2 \text{ m/s} = 8 \text{ m/s}$ \therefore the initial velocity of the car/ die aanvanklike snelheid van die motor 8 m/s	✓ 8 m/s A NPU (1)
8.2.2	$v(t) = 8 + 4t - t^2$ $v(0,2) = 8 + 4(0,2) - (0,2)^2$ m/s = 8,76 m/s \therefore the velocity of the car when 0, 2 seconds will be 8,76 m/s die snelheid van die motor wanneer 0,2 sekondes sal 8,76 m/s wees	√S √8,76m/s A NPU (2)
8.2.3	$v(t) = 8 + 4t - t^{2}$ v'(t) = 4 - 2t $v'(1,2) = 4 - 2(1,2) \text{ m/s}^{2}$ $= 1,6 \text{ m/s}^{2}$	✓ 4 A ✓ -2t A ✓ SF into a derivative/ in 'n afgeleide CA ✓ 1,6m/s² CA NPU (4) [13]

NOV 2019

6.1	$f(x) = 5 - \frac{1}{2}x$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ definition/definisie	A
	$-\lim_{h\to 0} \frac{\left[\left(5-\frac{1}{2}(x+h)\right)\right]-\left(5-\frac{1}{2}x\right)}{h}$	✓ SF	A
	$-\lim_{h\to 0} \frac{5-\frac{1}{2}x-\frac{1}{2}h-5+\frac{1}{2}x}{h}$		CA C
	$-\lim_{h\to 0} \frac{-\frac{1}{2}h}{h}$	$\checkmark \lim_{h \to 0} \frac{-\frac{1}{2}h}{h}$	A
	$-\lim_{k\to 0}\left(-\frac{1}{2}\right)$		
	$\therefore f'(x) = -\frac{1}{2}$	$\sqrt{-\frac{1}{2}}$	CA.
		AO: ONLY 1 mark/ SLEGS 1 punt	
		Penalty of 1 mark for	\neg
		incorrect notation/ penaliseer 1 punte vir	
		verkeerde notasie	
			(5)
No penal	ty for notation in the remaining questions/ Geen penalisee	ring vir notasie in die	
6.2.1	$f(x) = a^3 - 0.5x^3 - x^{-1}$ $f'(x) = 0 - 1.5x^2 + x^{-2} \text{ OR} / OF - 1.5x^2 + x^{-2}$	✓ derivative of afgeleide	
	$f(x) = 0 - 1,3x^{2} + x^{-1} \text{ OR} / \text{OF} - 1,3x^{2} + x^{-1}$	van a3	A
		✓ -1,5x² ✓ x-²	A
		√ x - 2	A (3)
6.2.2	$D_x\left[x\left(\sqrt{x}+2\right)\right]$	$\checkmark x^{\frac{1}{2}}$	A
	$= D_z \left[x \left(x^{\frac{1}{2}} + 2 \right) \right]$		
	$ = D_x \left[x^{\frac{3}{2}} + 2x \right] $ $ = \frac{3}{2} x^{\frac{1}{2}} + 2 $		CA
	LJ	$\sqrt{\frac{3}{2}}x^{\frac{1}{2}}$	CA
	$=\frac{3}{2}x^{\frac{1}{2}}+2$	× 2	CA (4)
	I	l .	1.7

6.3.1	$xy + 2x^3 = 7x^6$ $y = \frac{7x^6 - 2x^3}{x}$ OR / OF $y = 7x^5 - 2x^2$	✓M A ✓ making y the subject/maak y die onderwerp A (2)
6.3.2	$y = 7x^4 - 2x^2$ $\frac{dy}{dx} = 35x^4 - 4x$	✓ 35x ⁴ CA ✓ - 4x CA (2)
6.4.1	$P(300) = 0.8(300)^{2} - 200(300)$ = R12 000	✓profit/wins A (1)
6.4.2	$P(x) = 0.8x^{2} - 200x$ $0.8x^{2} - 200x = 0$ $x(0.8x - 200) = 0$ $x = 0 \text{ or } x = 250$ $\therefore 250 \text{ light bulbs/gloeilampe}$ OR/OF $0.8x^{2} - 200x = 0$ $0.8x^{2} = 200x$ $x = \frac{200x}{0.8x} ; x \neq 0$	✓ factors/faktore M A ✓ correct value of/korrekte waarde van x CA OR/OF ✓ isolating/ isoleer x M A
6.4.3	∴x=250 ∴ 250 light bulbs/gloeilampe $P(x) = 0.8 x^2 - 200x$	✓ correct value of/korrekte waarde van x CA AO: Full marks/Volpunte (2)
	P'(x) = 1,6x - 200 P'(200) = 1,6(200) - 200 =120 bulbs per day / gloeilampe per dag	✓ derivative/afgeleide A ✓ substitution/vervanging CA ✓ rate/tempo CA NPU (3) [22]

	-(-) 0- 10	1	_
7.1	g(x) = 9x + 18		
	x-intercept/ $afsnit$, $g(x) = 0$		
	0 = 9x + 18	✓ 0 = 9x + 18 A	
	-9x = 18		
	x = -2		
	Q(-2;0)	✓ coordinates of/koördinate	
	y-intercept/ $afsnit$, $x = 0$	van Q A	
	T(0;18)	✓ coordinates of/koördinate	
		van T A	
	OR/OF	OR/OF	
	(x+2)(x-3)(x-3)=0	✓ M A	
	Q(-2;0)	✓ coordinates of/koördinate	
		van Q A	
	y-intercept/ qf znit, $x = 0$	✓ coordinates of/koördinate	
	T(0;18)	van T A	
		(3)	
		AO: Full marks/Volpunte	
7.2	f(x) = (x+2)(x-3)(x-3)	✓ repeated factor/herhalde	\dashv
1.2		faktor A	
	$= (x+2)(x^2-6x+9) \text{ OR/OF } (x-3)(x^2-x-6)$	✓ quadratic factor/	
	$f(x) = x^3 - 4x^2 - 3x + 18$	kwadratiese faktor A	
	b = -4 c = -3 d = 18	✓ expanding/ uitbrei A	
	OR/OF	OR/OF	
	A() 3 . 1 2 1		
	$f(x) = x^3 + bx^2 + cx + d$		
	$f(x) = x^3 + bx^2 + cx + 18$	✓ d = 18 A	
	f(-2) = 0: $2b - c = -5$ (1)	✓S A	
	f(3) = 0: $3b + c = -15$ (2)	V S A	
	(1) + (2): $5b = -20$	✓ S A	
	∴ b = -4		
	2(-4) - c = -5		
	c = -3		
	07:27		
	OR/OF	OR/OF	
		UNUI	

			_
	$f(x) = x^3 + bx^2 + cx + d$ $f(x) = x^3 + bx^2 + cx + 18$ $0 = (3)^3 + b(3)^2 + c(3) + 18$	✓ d = 18 A	
	0 = 45 + 9b + 3c $c = -15 - 3b$	√S A	
	$f'(c) = 3x^2 + 2bx + c$ $f'(3) = 3(3)^2 + 2b(3) + c$		
	c = -27 - 6b -15 - 3b = -27 - 6b $\therefore b = -4$	√S A	
	c = -27 - 6(-4) c = -3	(3)	
7.3	$f(x) = x^3 - 4x^2 - 3x + 18$	√ f ′ (x) CA	
	$f'(x) = 3x^2 - 8x - 3 = 0$ $3x^2 - 8x - 3 = 0$	$\checkmark f^{\prime}(x) = 0$ CA	
	$(3x+1)(x-3) = 0 \text{ OR}/OF \ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(3)(-3)}}{2(3)}$	√factors/formula/faktore/form CA	
	$x = -\frac{1}{3} \operatorname{or}/of^{2} x \neq 3$	√ correct value of/korrekte waarde van x CA	
	$y = f\left(-\frac{1}{3}\right) = \left(-\frac{1}{3}\right)^3 - 4\left(-\frac{1}{3}\right)^2 - 3\left(-\frac{1}{3}\right) + 18 = \frac{500}{27}$ $\therefore R\left(-\frac{1}{3}; \frac{500}{27}\right) OR/OF R\left(-0.33; 18.52\right)$	✓ R coordinates/koördinate	
	$\frac{1}{3}$, $\frac{1}{27}$ $\frac{1}{3}$, $\frac{1}{27}$ $\frac{1}{3}$ $\frac{1}{3}$	CA (5)	
7.4.1	$y = \frac{500}{27} \text{ OR} / OF y \approx 18,52$	✓equation/vergelyking CA (1)	
7.4.2	$x > -2$ OR/OF $x \in (-2; \infty)$	✓ correct inequality/korrekte ongelykheid A (1)	
7.4.3	$-\frac{1}{3} < x < 3 \text{OR/}OF x \in \left(-\frac{1}{3}; 3\right)$	✓ critical values/kritiese waardes CA ✓ correct notation/korrekte	
		notasie CA (2) [15]	

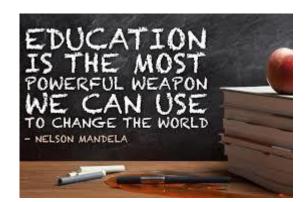
8.1	h = (66 - 2x - x) cm		
	=(66-3x) cm	✓ height/hoogte A	
		(1)	
		NPU	
8.2	$V(\text{in cm}^3) = \pi r^2 h + \frac{1}{2} \left(\frac{4}{3} \pi r^3 \right)$	✓F A	
	$= \pi x^2 (66 - 3x) + \frac{1}{2} \left(\frac{4}{3} \pi x^3 \right)$	✓ SF CA	
	$= 66\pi x^2 - 3\pi x^3 + \frac{2}{3}\pi x^3$	✓S CA	
	$= 66\pi x^2 - \frac{7}{2}\pi x^3$	NPU	
	,	(3)	
8.3	$V(\text{in cm}^3) = 66\pi x^2 - \frac{7}{3}\pi x^3$		
	$\frac{dV}{dr} = -7\pi x^2 + 132\pi x$	✓ derivative/afgeleide CA	
	$0 = -7\pi x^2 + 132\pi x$	✓ equating $f'(x)$	
	$-(132\pi)\pm\sqrt{(132\pi)^2-4(-7\pi)(0)}$	to/stel gelyk aan 0 A	
	$0 = -\pi x (7x - 132) \text{ OR / OF } x = \frac{-(132\pi) \pm \sqrt{(132\pi)^2 - 4(-7\pi)(0)}}{2(-7\pi)}$	✓ factors/ formula faktore/form CA	
	$-\pi x = 0$ or/of $x = \frac{132}{7}$,	
	x ≠ 0		
	$\therefore x = \frac{132}{2}$	✓ correct value of/	
	,	korrekte waarde van x CA	
L_		(4)	L
8.4	$V(\text{in cm}^3) = 66\pi x^2 - \frac{7}{3}\pi x^3$		
	$=66\pi \left(\frac{132}{7}\right)^2 - \frac{7}{3}\pi \left(\frac{132}{7}\right)^3$	✓ SF CA	
	≈24 576,74 OR/OF 7823,02 π	✓ max/maks volume	
		CA	
		NPR (2)	
		[10]	

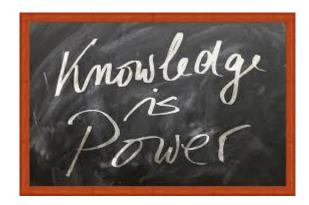
INTEGRATION EXEMPLAR 2018

QUESTION 9

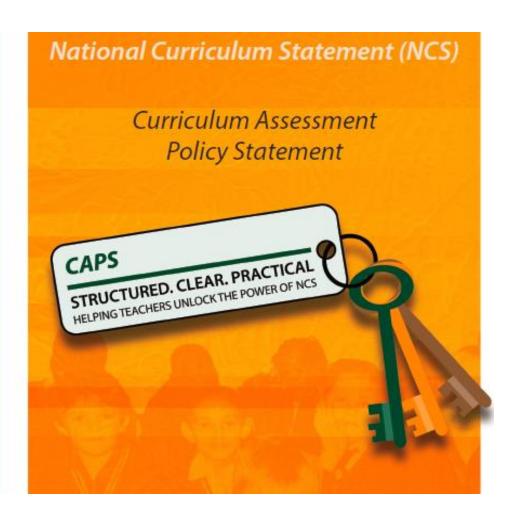
9.1	$\int \left(x^{-4} + \frac{7}{x} - 1\right) dx$ $- \int x^{-4} dx + 7 \int \frac{1}{x} dx - \int dx$ $- \frac{x^{-3}}{-3} + 7 \ln x - x + C$	$\sqrt{\frac{x^{-5}}{-5}}$ $\sqrt{7 \ln x}$ $\sqrt{-x}$ \sqrt{C} (4)
9.2	$h(x) = -2x^2 - 6x$ $\int_0^0 (-2x^2 - 6x) dx$	
	$h(x) = -2x^{2} - 6x$ $\int_{-3}^{0} (-2x^{2} - 6x) dx$ $-\left[-\frac{2x^{3}}{3} - 3x^{2} \right]_{-3}^{0}$	$\checkmark - \frac{2x^3}{3}; \checkmark - 3x^2$
	$-\left[\left(-\frac{2(0)^3}{3} - 3(0)^2\right) - \left(-\frac{2(-3)^3}{3} - 3(-3)^2\right)\right]$	✓Substituting 0 ✓Substituting - 3
	■ -18+27 = 9 units square	√Simplification
		(5) [9]

NOV	2018	
QUES	IION/VRAAG 9 Penalty of one mark once only if the constant in Questions 9.1 Penalisering met slegs oen punt, indien konstante in Vrae 9	
9.1.1	$\int -\frac{6}{x} dx$ $= -6 \int \frac{1}{x} dx$ $= -6 \ln x + C OR \ln \frac{1}{x^6} + C OR -6 \log_e x + C$	$\sqrt{-6 \ln x}$ OR/OF $\ln \frac{1}{x^6}$ OR/OF $-6 \log_e x$ ✓ C
9.1.2	[/_ 1\ ² 1	(2)
	$\int (x-1)^2 dx$ = $\int (x^2 - 2x + 1) dx$ = $\frac{x^3}{3} - x^2 + x + C$	$\sqrt{\text{product/product } \mathbf{M}}$ $\sqrt{\frac{x^3}{3}}$ CA $\sqrt{-x^2}$ CA $\sqrt{x+C}$ CA
9.2		√ Area notation using intergrals/ Area-notasie met gebruik van integrale M √ x³/3 A √ 3x A √ SF CA √ bounded area/ begrensde oppervakite CA NPU AO: 3 marks/punte
		(6) [12]


NOV 2019


9.1.1	$\int m x^p dx$ $= m \left(\frac{x^{p+1}}{p+1} \right) + C \qquad p \neq -1$	$\checkmark m\left(\frac{x^{p+1}}{p+1}\right)$ $\checkmark C$	A A	
	OR/OF	OR/OF		
	$= \frac{mx^{p+1}}{p+1} + C \qquad p \neq -1$	$\sqrt{\frac{mx^{p+1}}{p+1}}$ \sqrt{C}	A	
		√ C	A (2)	
9.1.2	$\int \left(\frac{x^{-3} + x^2}{x^{-1}} - 2\right) dx$ $-\int \left(x^{-2} + x^3 - 2x^0\right) dx$ $-x^{-1} + \frac{x^4}{4} - 2x^3 + C$			
	$-\int (x^{-2} + x^3 - 2x^0) dx$	√ S	A	
	$-x^{-1} + \frac{x^4}{4} - 2x^1 + C$	✓ -lx ⁻¹	CA	
		$\begin{array}{l} \checkmark -1x^{-1} \\ \checkmark \frac{x^4}{4} \\ \checkmark -2x^1 + C \end{array}$	CA	
		$\checkmark - 2x^1 + C$	CA	
			(4)	

9.2	A = $\int_{1,4}^{3.5} \left(-\frac{4}{x}\right) dx$ = $[-4 \ln x]_{1,4}^{3.5}$ = $[-4 \ln(3,5)] - [-4 \ln(1,4)]$ ≈ -3.67 $\therefore 3.67$ square units vierkante eenhede	✓ area notation using integral/ oppervlakte notasie deur gebruik van integrasie A ✓ integral/integraal A ✓ substitution/vervanging CA ✓ substitution/vervanging CA ✓ S ✓ CA ✓ correct positive value of the bounded area/ korrekte positiewe waarde van die begrensde oppervlakte CA OR/OF
	OR/OF A = $-\int_{1.4}^{3.5} \left(-\frac{4}{x}\right) dx$ = $-[-4\ln x]_{1.4}^{3.5}$ = $[4\ln(3.5)] - [4\ln(1.4)]$ ≈ 3.67 $\therefore 3.67$ square units/vierkante eenhede	✓ area notation using integral/ oppervlakte notasie deur gebruik van integrasie A ✓ integral/integraal A ✓ substitution/vervanging CA ✓ substitution/vervanging CA ✓ S CA ✓ correct positive value of the bounded area/korrekte positiewe waarde van die begrensde oppervlakte CA ✓ correct positive value of the
	OR/OF	OR/OF
	A = $\int_{1,4}^{3,5} \left[0 - \left(-\frac{4}{x} \right) \right] dx$ = $\int_{1,4}^{3,5} 0 dx + \int_{1,4}^{3,5} \left(\frac{4}{x} \right) dx$ = $\left[4 \ln x \right]_{1,4}^{3,5}$ = $\left[4 \ln (3,5) \right] - \left[4 \ln (1,4) \right]$ $\approx 3,67$ $\therefore 3,67$ square units/vierkante eenhede	✓ area notation using integral/ oppervlakte notatie deur gebruik van integrasie A ✓ integral/integraal A ✓ substitution/vervanging CA ✓ substitution/vervanging CA ✓ S CA ✓ correct positive value of the bounded area/korrekte positiewe waarde van die begrensde oppervlakte CA NPR & NPU (6) [12]



EC CURRICULUM: FET MATHEMATICS, MATHEMATICAL LITERACY AND TECHNICAL MATHEMATICS

FECHNICAL MATHEMATICS

ENJOY TECHNICAL MATHEMATICS... BECAUSE YOU CAN!

