- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 5

5.1	Midpoint BD $\left(\frac{0-2}{2}; \frac{8-6}{2}\right)$	✓ x-coordinate ✓ y-coordinate
	$\begin{pmatrix} 2 & 2 \end{pmatrix}$ = $(-1; 1)$	(2)
5.2	y = 7(-8) + 58	✓substitution
	= 2	(1)
	∴ A lies on the line.	Substitute both at the same time with justification (1)
5.3	The line $y = 7x + 58$ is a tangent to the circle at A.	√relationship
	$m_{line} = 7$ $m_{AM} = \frac{2-1}{-8-(-1)} = -\frac{1}{7}$	$\checkmark m_{AM} = \frac{2-1}{-8-(-1)} = -\frac{1}{7}$ $\checkmark m_{line} = 7$
	$m_{line} \times m_{AM} = 7 \times -\frac{1}{7} = -1$	✓product
	∴ AM ⊥ to the line	(5)
	OR	

NOTE: $m_{vv} = 7$ at

 $m_{line} = 7$ and CA gradient of AM then no relationship: 4/5

Copyright reserved Please turn over

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.3	OR	
contd	$m_{BD} = 7$	$\checkmark \checkmark m_{BD} = 7$
	$m_{line} = 7$	$\checkmark \checkmark m_{BD} = 7$ $\checkmark m_{line} = 7$
	∴ line // diameter	
		√√ conclusion (5) Note: Only lines parallel 4/5
	OR	
	$(x+1)^2 + (y-1)^2 = 50$	✓ circle equation
	$x^{2} + 2x + 1 + y^{2} - 2y + 1 = 50$ $x^{2} + 2x + 1 + (7x + 58)^{2} - 2(7x + 58) + 1 = 50$ $x^{2} + 2x + 1 + 49x^{2} + 812x + 3364 - 14x - 116 + 1 = 50$	✓ substitution of $y = 7x + 58$
	$50x^2 + 800x + 3200 = 0$ $x^2 + 16x + 64 = 0$	✓standard form
	$(x+8)^2 = 0$	✓ answer
	x = -8	✓ tangent (5)
	y = 2 $y = 7x + 58$ is a tangent to the circle	
5.4	$AD = \sqrt{(8-2)^2 + (0+8)^2}$	✓ substitution
	$=\sqrt{36+64}$	
	= 10	✓ answer
	$AB = \sqrt{(2+6)^2 + (-8+2)^2}$	✓ substitution
	$=\sqrt{64+36}$	
	=10	✓ answer (4)
		Note: Answers $\sqrt{10}$ then $3/4$

Copyright reserved Please turn over

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.5	$m_{AD} = \frac{8 - (2)}{0 - (-8)}$	
	$m_{AD} = \frac{3}{4}$	✓ gradient of AD
	$m_{AB} = \frac{2 - (-6)}{-8 - (-2)}$	
	$\begin{aligned} &-8 - (-2) \\ &= -\frac{4}{3} \end{aligned}$	✓ gradient of AB
	3	
	$m_{AB}.m_{AD} = -\frac{4}{3} \times \frac{3}{4}$ $= -1$	✓ PRODUCT
	$D\hat{A}B = 90^{\circ}$	(3)
	OR	✓ distance formula
	$BD^{2} = (8+6)^{2} + (0+2)^{2}$ $= 200$	distance formula
	$= AD^2 + AB^2$	✓ Pythagoras ✓ conclusion
	$\therefore DAB = 90^{\circ}$	(3)
	OR $a^2 = b^2 + d^2 - 2(b)(d)\cos A$	✓ cos rule
	$200 = 100 + 100 - 2(10)(10)\cos A$	✓ substitution
	$0 = -200\cos A$ $A = 90^{\circ}$	✓ conclusion (3)
	OR	
	$(AD)^2 = 100$	
	$(AB)^{2} = 100$ $BD^{2} = (-2 - 0)^{2} + (-6 - 8)^{2}$	$\checkmark BD^2 = 200$
	=4+196	
	= 200	$\checkmark BD^2 = AD^2 + AB^2$
	$\therefore BD^2 = AD^2 + AB^2$	✓ conclusion (3)
	$\therefore D\hat{A}B = 90^{\circ} \text{(Pyth)}$	
	OR	✓ ✓ reason
	$\hat{A} = 90^{\circ}$ (angles in semi - circle)	(3)
5.6	$\theta = 45^{\circ}$	✓ answer (1)

Copyright reserved

Please turn over

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.7	Let the radius of circle TNM be <i>r</i>	
	NB = BM (properties of a kite)	✓ NB = BM
	AN = TZ = r (TZNA is a square)	\checkmark AN = TZ = r
	NB = 10 - r	\checkmark NB = $10 - r$
	BD = 2MB	✓ BD = 2MB
	$\sqrt{(8-(-6))^2 + (0-(-2))^2} = 2(10-r)$	\checkmark BD = $\sqrt{200}$
	$\sqrt{200} = 2(10 - r)$	
	$10\sqrt{2} = 2(10 - r)$	
	$r = 10 - 5\sqrt{2}$	✓answer
	= 2,93	(6)
	OR	
	$Z \stackrel{\wedge}{M} B = 90^{\circ}$	✓tan radius theorem
	$MB = \frac{1}{2}\sqrt{200}$	tan radius incorem
	= 7,07	√√MB
	$\frac{ZM}{MB} = \tan 22.5^{\circ}$	
		✓√tan 22,5°
	$ZM = 7.07 \tan 22.5^{\circ}$	
	= 2,93	
		✓answer
	OR	(6)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.7	$MB^2 = (-1+2)^2 + (1+6)^2$	
contd	= 1 + 49 $= 50$	✓✓MB
	$MB = \sqrt{50}$ $\frac{ZM}{MB} = \tan 22.5^{\circ}$	✓√tan 22,5°
	$ZM = 7.07 \tan 22.5^{\circ}$ = 2.93	✓✓ answer (6)
	OR	
	By a well known formula	
	Area $\triangle ABD = r \times (\text{semi—perimeter})$ $\frac{1}{2} \times 10 \times 10 = r \times \frac{1}{2} (20 + \sqrt{200})$ $50 = r(10 + 5\sqrt{2})$	formula $\sqrt{200}$ $\sqrt{2}$ answer (6)
	r = 2,93	
	$MB = \sqrt{50}$ (radius of circle) $NB = \sqrt{50}$ (adjacent sides of kite) AB = 10	✓MB ✓ NB
	$AN = 10 - \sqrt{50}$ $= 2,93$	✓✓AN = 2,93
	But TANZ is a square ∴ AN = ZN	✓ square ✓ answer
	∴ radius = 2,93	(6)

Copyright reserved Please turn over

Mathematics/P2 13 DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
 If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 6

6.1.1	$4\times5 = 20$ squared units	✓ answer $2^2 \times 5$ 1/2 If $2 \times 5 = 10$ 0/2
6.1.2	$(x; y) \rightarrow (2x; 2y)$ Note: If candidate state: coordinates times two 2/2	(2) $\checkmark 2x$ $\checkmark 2y$ (2) If $(kx; ky):1/2$
6.1.3	A/ (-2;8)	If $2(x; y)$: $2/2$ \checkmark coordinates A' \checkmark coordinates B' \checkmark coordinates C' (3) If diagram not drawn but coordinates correctly given: $1/3$ If coordinates correctly plotted but not joined: $2/3$
6.1.4	Note: Shape remains the same: $1/2$ Only the shape remains the same: $2/2$ Reflection about the line $y = x$: $(x; y) \rightarrow (y; x)$ Rotate clockwise about the origin: $(y; x) \rightarrow (x; -y)$ Translate 2 left and 3 down: $(x; -y) \rightarrow (x-2; -y-3)$ OR General rule: $(x; y) \rightarrow (x-2; -y-3)$	✓ same shape and different size (2) not rigid only 2/2 just enlarged 0/2 Mark per coordinate ✓ reflection ✓ rotation ✓ translation (6) Answer only: Full marks [15]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

OR

The first 2 transformations in the given order is the same as the reflection in the *x*-axis i.e. $(x; y) \rightarrow (x; -y)$

Then the translation gives us

$$(x; y) \to (x; -y) \to (x-2; -y-3)$$

NOTE:

If just given: $(x; y) \to (x-2; y-3): 2/6$

If using $(x; y) \rightarrow (y; x) \checkmark \checkmark$ $(x; y) \rightarrow (y; -x) \checkmark$

 $(x; y) \rightarrow (x-2; y-3) \checkmark \text{ throughout :4/6}$

If learner starts with (x; y) and continue to use (x; y) for the second and third transformation 4/6

QUESTION 7

		,
7.1	$T'(x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$	$\checkmark x$ coordinate
		✓ y coordinate
		(2)
		Clock-wise formula: 0/2
7.2	$A'(p\cos 135^{\circ} - q\sin 135^{\circ}; q\cos 135^{\circ} + p\sin 135^{\circ})$	✓ x coordinate
		✓ y coordinate
	If clockwise rotation:	(2)
	$A'(p\cos 135^{\circ} + q\sin 135^{\circ}; q\cos 135^{\circ} - p\sin 135^{\circ})$	
	$A \left(p \cos 155 + q \sin 155 , q \cos 155 - p \sin 155 \right)$	CA from 7.1
7.0	(42.50)	
7.3	$x' = p\cos(135^\circ) - q\sin(135^\circ)$	
	$-1 - \sqrt{2} = -p\cos 45^{\circ} - q\sin 45^{\circ}$	✓ equating
	$-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$	✓ substitution
	$\begin{pmatrix} 1 & \sqrt{2} & P \\ 2 & \end{pmatrix} \stackrel{q}{=} \begin{pmatrix} 2 \\ \end{pmatrix}$	
	$-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} q \dots (1)$	
	$-1-\sqrt{2} = -\frac{1}{2}p - \frac{1}{2}q(1)$	
	and	
	$y' = y\cos(135^\circ) + p\sin(135^\circ)$	✓ equating
	$1 - \sqrt{2} = -q\cos 45^\circ + p\sin 45^\circ$	
	$(\overline{2})$ $(\overline{2})$	/2
	$1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$	\checkmark substitution $\frac{\sqrt{2}}{2}$
		2
	$-\sqrt{2}$ $\sqrt{2}$	
	$1 - \sqrt{2} = -\frac{\sqrt{2}}{2}q + \frac{\sqrt{2}}{2}p(2)$	
	(1) + (2):	
	$-2\sqrt{2} = -\sqrt{2}q$	✓ solving simultaneously
	q=2	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

 \checkmark answer for qSubstitute q = 2 into(1) $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} (2)$ $-1 = -\frac{\sqrt{2}}{2}p$ Note: If not left in surd form: 6/7 $p = \sqrt{2}$ \checkmark answer for p $A = (\sqrt{2}; 2)$ (7)OR $x' = p\cos(135^{\circ}) - q\sin(135^{\circ})$ ✓ equating $-1 - \sqrt{2} = -p \cos 45^{\circ} - q \sin 45^{\circ}$ ✓ substitution $-1 - \sqrt{2} = -p \left(\frac{\sqrt{2}}{2}\right) - q \left(\frac{\sqrt{2}}{2}\right)$ $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} q \dots (1)$ and $y' = y \cos(135^\circ) + p \sin(135^\circ)$ ✓ equating $1 - \sqrt{2} = -q \cos 45^{\circ} + p \sin 45^{\circ}$ $1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$ \checkmark substitution $\frac{\sqrt{2}}{2}$ -0.41 = -0.71q + 0.71p...(2) (1) + (2): $-2\sqrt{2} = -\sqrt{2}a$ ✓ solving simultaneously Substitute q = 2 into(1) -2.41 = -0.71p - 0.71q (2) \checkmark answer for q1,42 p = 2p = 1,41 \checkmark answer for pNote: If not left in $\therefore A = (\sqrt{2}; 2)$ surd form: 6/7 (7)OR

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$$-\frac{\sqrt{2}}{2}(p+q) = -1 - \sqrt{2}$$

$$p+q = -\frac{2}{\sqrt{2}}(-1 - \sqrt{2})$$

$$p+q = \sqrt{2} + 2$$
and

$$\frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$$

$$p-q = \sqrt{2} - 2$$

$$p+q = \sqrt{2} + 2$$

$$2p = 2\sqrt{2}$$

$$p = \sqrt{2}$$

$$q = 2$$

OR

A(p;q) is obtained from A' by a rotation through 135° in a clockwise direction

$$p = (-1 - \sqrt{2}) \cos(-135^{\circ}) - (1 - \sqrt{2}) \sin(-135^{\circ})$$

$$= (-1 - \sqrt{2}) \left(-\frac{1}{\sqrt{2}} \right) - (1 - \sqrt{2}) \left(-\frac{1}{\sqrt{2}} \right)$$

$$= \frac{2}{\sqrt{2}}$$

$$= \sqrt{2}$$

$$q = (1 - \sqrt{2}) \cos(-135^{\circ}) + (-1 - \sqrt{2}) \sin(-135^{\circ})$$

$$= (1 - \sqrt{2}) \left(-\frac{1}{\sqrt{2}} \right) + (-1 - \sqrt{2}) \left(-\frac{1}{\sqrt{2}} \right)$$

$$= \frac{2\sqrt{2}}{\sqrt{2}}$$

$$= 2$$

$$\therefore A = (\sqrt{2}; 2)$$

 $\sqrt{-\frac{\sqrt{2}}{2}}(p+q) = -1 - \sqrt{2}$

✓ substitution

 $\checkmark \frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$

 \checkmark substitution $\frac{\sqrt{2}}{2}$

 \checkmark solving simultaneously

 \checkmark answer for q

✓ answer for p

(7)

✓ substituting $(-1-\sqrt{2})$

 \checkmark substitution $\frac{1}{\sqrt{2}}$

✓ equating

 \checkmark substitution $\frac{1}{\sqrt{2}}$

✓ substituting $(-1-\sqrt{2})$

✓ answer for q

 \checkmark answer for p

(7)

Copyright reserved

Please turn over