

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

EXEMPLAR 2008

MEMORANDUM

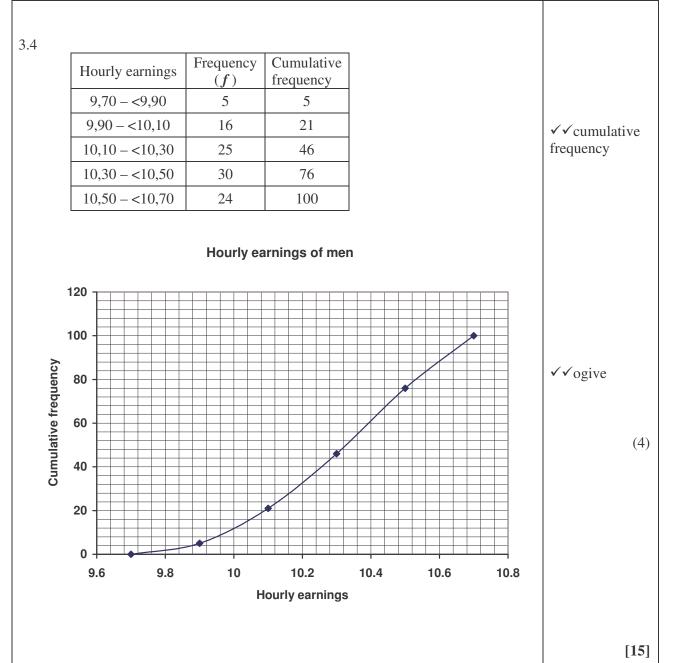
This memorandum consists of 9 pages.

1

н

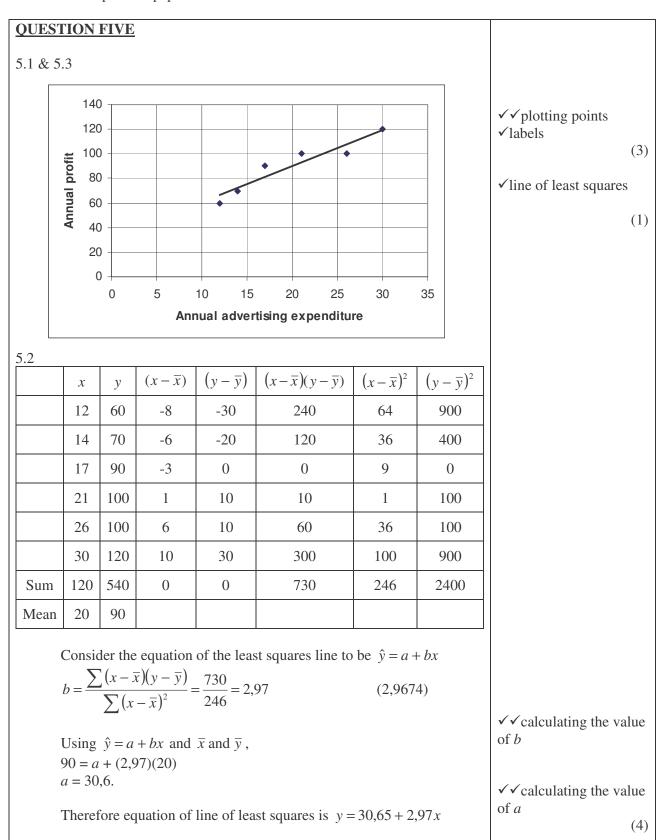
п

N


Please turn over

MEMORANDUM : GRADE 12, Exemplar PAPER 3,

OUE	STION ONE	
1.1	$T_1 = 5, T_2 = 8, T_3 = 11, T_4 = 14, T_5 = 17.$	$\checkmark \checkmark \checkmark$ calculating terms from formula (3)
1.2	Tn = 3n + 2	✓ calculating the coefficient of n ✓ calculating the value of the constant. (2)
OUE	STION TWO	[5]
2.1	Average $= \frac{61}{3}$ $= 20,33$	✓answer (1)
2.2	Since it is not an every day occurrence that 20 people will die in a train collision, the average is skewed from $\frac{41}{3} = 13,67$ to $\frac{61}{3} = 20,33$.	✓√ explanation (2)
2.3	No. The reporter stood at one spot for TWO hours. The sample that the report was based on was far too small to make any valid conclusions. The conclusion does not take into account the situation at other level crossings. OR	✓ no ✓ explanation (2) [5]
	Yes From his experience only 1 car stopped, hence his claim could be valid.	


NOTE: According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen and paper method as indicated below.

QUE	STION THREE								
3.1	3.1								
	Hourly earnin	ngs Midpo of inter (x)	val Fre	quency (f)		$(x \times x)$			
	9,70 - < 9,9	0 9,80)	5		49			
	9,90-<10,1	0 10,0	0	16		160		✓ midpoints of	
	10,10 - <10,3	30 10,2	0	25		255		intervals	
	10,30 - <10,5	50 10,4	0	30		312		✓ totals	
	10,50 - <10,7	70 10,6	0	24		254,4			
		Sum				1030,4		✓sum	
3.2	$Mean = \frac{1030,4}{100} = R10,30$						✓ calculating the mean (4)		
	Percentages	Midpoint of interval (x)	Frequence (f)	cy (x	$-\overline{x})$	$(x-\overline{x})^2$	$f \times (x - \overline{x})^2$	✓ calculating the difference between midpoints and	
	9,70-<9,90	9,80	5	-	0,5	0,25	1,25	mean	
	9,90-<10,10	10,00	16	-	0,3	0,09	1,44	\checkmark calculating the	
	10,10-<10,30	10,20	25	-	0,1	0,01	0,25	squares of the difference	
	10,30 - <10,50	10,40	30	(0,1	0,01	0,3	between midpoints and	
	10,50 - <10,70	10,60	24	(0,3	0,09	2,16	mean	
						Sum	5,4	\checkmark calculating the	
	Standard deviati	on = $\sqrt{\frac{5,4}{100}}$ =	= 0,23					totals $\checkmark \checkmark$ calculating the standard deviation (5)	
3.3	3 Yes, she is correct. The difference in the mean between men and women is only 5 cents and the difference between the standard deviation is 2 cents.					✓ answer ✓ explanation (2)			

OUES	TIAN FALD	
4.1	TION FOUR	
	ass Maths or Acc $= P(pass Maths) + P(pass Acc) - P(pass Maths and Acc)$ = 0,4 + 0,6 - 0,3	√formula
	= 0,7	✓ substitution of probabilities ✓ answer
	25 5	(3)
4.2.1	P(first one not defective) = $\frac{35}{40} = \frac{7}{8}$	√√answer
		(2)
4.2.2	P(one defective and one not defective) = P(defective, not defective) + P(not defective, defective) = $\left(\frac{5}{40} \times \frac{35}{39}\right) + \left(\frac{35}{40} \times \frac{5}{39}\right)$	✓ sum of probabilities ✓ ✓ substitution of probabilities
	$=\frac{35}{156}=0,22$ (0,2243589)	
	156	✓answer (4)
4.2.3	P(defective and defective) = $\frac{5}{40} \times \frac{4}{39} = \frac{1}{78} = 0.01$ (0.012820)	✓✓ substitution of probabilities and product ✓ answer
		(3)
4.3.1	Any book in any position in $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 7! = 5040$ different ways.	✓ multiplication rule ✓ answer
		(2)
4.3.2	The two books can be arranged in $2 \times 1 = 2$ different ways.	✓ multiplication rule – two
	Consider these two books as a single entity. Now we need to arrange six objects. This can be done in $6 \times 5 \times 4 \times 3 \times 2 \times 1 =$	books ✓ multiplication rule – six objects
	$6! = 720$ different ways. Therefore the total arrangement of these books can take place in $2 \times 720 = 1440$ different ways.	✓ answer (3)
4.3.3	The Mathematics books can be arranged in $4 \times 3 \times 2 \times 1 = 4! = 24$ different ways. The Science books can be arranged in $3 \times 2 \times 1 = 3! = 6$ different ways. The Mathematics books and	✓ multiplication rule – 24 and 6
	the Science books can be arranged in $2 \times 1 = 2$ different ways. Therefore the total arrangement of these books can take place in	✓ multiplication rule – two different subjects ✓ answer
	$24 \times 6 \times 2 = 288$ different ways.	(3)
		[20]

NOTE: According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen and paper method as indicated below.

r	NSC : Memorandum	1	
5.4	y = 30,6 + (2,97)(25000) = 104 850 ∴ Profit = R104 850.	✓ substituting 25 ✓ profit in rands	(2)
5.5	$s_{y} = \sqrt{\frac{\sum (y - \overline{y})^{2}}{n - 1}} = \sqrt{\frac{2400}{5}} = 21,908$	$\checkmark \checkmark \checkmark$ calculating the	
	$s_{x} = \sqrt{\frac{\sum (x - \bar{x})^{2}}{n - 1}} = \sqrt{\frac{246}{5}} = 7,0142$ Using $b = r \frac{s_{y}}{s_{x}}$, we have $2,9674 = r \frac{21,908}{7,0142}$ r = 0.95	value of <i>r</i>	(3)
5.6	There is strong positive correlation between the annual advertising expenditure and the annual profit of the company.	✓strong ✓positive	(2) [15]

QUESTION SIX

6.1.1	$3x + x + 2x = 180^{\circ}$ (angles on a straight line) $6x = 180^{\circ}$ $x = 30^{\circ}$	✓ $3x + x + 2x = 180^{\circ}$ ✓ reason ✓ answer	(3)
6.1.2	$\hat{B}_1 = 2x = 60^{\circ}$ $\hat{E} = 60^{\circ}$	$\checkmark \hat{B}_1 = 2x = 60^{\circ}$	
	Now $E = B_1$ \therefore AC is a tangent (angle between line and chord = angle in alternate segment)	✓ reason	(2)

Mathematics Paper 3	- 9 - NSC : Memorandum	Grade 12 Exempl	ar 2008
6.2.1 A clock has 12 sectors		$\checkmark 12 \alpha = 360^{\circ}$	
Now $12 \alpha = 360^{\circ}$		$\checkmark AOD = 60^{\circ}$	
$\therefore \alpha = 30^{\circ} \text{ at}$	centre	$\checkmark AOD = 60^{\circ}$	(2)
$\therefore \hat{AOD} = 60^{\circ} ($	angle at the centre)	~	
6.2.2 From 6.1 $\dot{COB} = 3\alpha$		$\checkmark C \stackrel{\circ}{O} B = 3x$ $\checkmark C \stackrel{\circ}{O} B = 3(30^{\circ}) = 90$	
		$\checkmark COB = 3(30^{\circ}) = 90$	° (2)
$\overrightarrow{COB} = 3(30^{\circ})$	$() = 90^{\circ}$		(_)
6.2.3 $\dot{CAB} = \frac{1}{2} (90^{\circ}) \dots ($	angle at the centre)		
$= 45^{\circ}$		✓ 45°	
$A\hat{C}D = \frac{1}{2}$ (60°)(a)	angle at the centre)	$\checkmark A \stackrel{\circ}{C} D = \frac{1}{2} (60^{\circ})$	
$= 30^{\circ}$		✓ 75°	(3)
Now $\hat{E}_1 = C\hat{A}B + A\hat{C}$	D(exterior angle of triangle)		[12]
= 75°			
QUESTION SEVEN			
7.1 $4t > 3t$			
4t + 1 > 3t - 1			
and $3t - 1 < 3t$		$\checkmark 4t + 1 > 3t > 3t - 1$	
$\therefore 4t + 1 > 3t > 3t - 1$		\checkmark DF is the longest sid	le
\therefore DF is the longest side	e	en e	(2)
7.2 $DF^2 = (4t + 1)^2 = 16t^2 + 10t^2$	94 - 1		
$F^{2} = (3t - 1) = 9t^{2} - 6t$			
$DE^{2} = (3t)^{2} = 9t^{2}$	T 1	$\checkmark (4t+1)^2 = 16 \ t^2 + 8t$	t +1
For ΔDEF to be right angled			
0 0	$= 18t^2 - 6t + 1$ (Converse Pythagoras)	\checkmark Converse Pythagora	S
	14t = 0	$\checkmark -2 \ t \ (t-7) = 0$	
	(-7) = 0	$\checkmark t=7$	
t = 0 (N / A)	.); <u>t=7</u>		(4)
			[6]
		1	

Mathe	- 10 - NSC : Memorandum	Grade 12 Exemplar 2008
QUE	STION EIGHT	
8.1	B ₁ = x(angle between tan-chord theorem) A ₂ = x(FA = FB) B ₂ = x(DAB = DBA = $2x / \text{tan-chord theorem}$) D ₁ = B ₂ = x(alternate angles, DC//FB) C = B ₁ = x(corresponding angles, DC//FB / ext ∠ theorem)	em) \checkmark one mark for each angle \checkmark \checkmark \checkmark (5)
8.2	$A_2 = D_1 = x \dots$ (from 8.1 above.) but these are angles subtended by BE \therefore ABED is cyclic	$\checkmark A_2 = D_1 = x$ $\checkmark \text{ reason} $ (2)
8.3 8.4	$B_3 = A_1 = x \dots (angles in the same segment)$ Now ABE = $B_1 + B_2 + B_3$ = $3x$ = $3DAE$. $D_1 = C = x$	$\checkmark B_3 = A_1 = x$ $\checkmark ABE = B_1 + B_2 + B_3$ $\checkmark 3x$ (3)
0.4	$D_1 = C = x$ $\therefore BD = CB \dots (Isosceles Triangle)$ but BD = AD \dots (tangents from a common point) $\therefore AD = BC$	$\checkmark D_1 = C = x$ $\checkmark BD = CB$ $\checkmark BD = AD$ (3) [12]
QUE	STION NINE	
	$R_{2} = R_{3} = x \dots (LRN \text{ bisected})$ $R_{2} = P_{1} = x \dots (\text{ corresponding angles, RM//PN})$ $R_{3} = N_{1} = x \dots (\text{ alternate angles; RM//PN})$ Now RN = RP In Δ LNP; $\frac{LR}{RP} = \frac{LM}{MN} \dots (RM//PN; \text{ lines drawn parallel to})$ But RN=RP $\frac{LR}{RN} = \frac{LM}{MN}$	$\checkmark R_2 = P_1 = x$ $\checkmark R_3 = N_1 = x$ $\checkmark RN = RP$ $\checkmark \frac{LR}{RP} = \frac{LM}{MN}$ (4)
	$R_2 = L_1 = x$ (alternate angles, KL//PN) Now $L_1 = N_1 = x$ ∴ KLNP is cyclic(angles subtended by the same arc)	$ \checkmark R_2 = L_1 = x \checkmark L_1 = N_1 = x $ (2)
	In Δ 's KLP, MRN $L_1 = R_3 = x$ (from 9.1) $N_2 = P_2$ (KLNP is cyclic) LKP = RMN(Remaining angles) $\therefore \Delta$ KLP Δ MRN	$\checkmark L_1 = R_3 = x$ $\checkmark N_2 = P_2$ $\checkmark LKP = RMN$ (2)
		(3) [9]
		L° 1

TOTAL : 100 marks