Grade 11 Mathematics: Question Paper 1

MARKS: 150 TIME: 3 hours **QUESTION 1**

1.1	1.1.1	Which of the following numbers is non-real? $\sqrt{3}$ or $\sqrt{-9}$	(1)
	1.1.2	Determine the value of <i>a</i> : $(x^{\frac{1}{2}})^{\frac{2}{3}}x^3 = x^a$	(2)
	1.1.3	Simplify: $\sqrt{75} - \sqrt{48}$. Leave answer in surd form.	(2)
	1.1.4	Will the product of two irrational numbers always be irrational? Support you answer with an example.	(3)
1.2	Find th 1.2.1 1.2.2 1.2.3	ne 6 th term of each of the following sequences 2; 5; 8; 11; 64; 32; 16; 8; 1; 4; 9; 16;	(1) (1) (1)
1.3	Find:	$30000 \times (1 0,3)^{10}$	(1)

Answer the following questions relating to the graphs below 1.4

1.4.1	Which function, $f(x)$ or $g(x)$, has the form $y = 3^x$?	(1)
1.4.2	What are the roots of $f(x) = 0$?	(2)
1.4.3	What is y-intercept of $g(x)$?	(1)
1.4.4	What is the range of $g(x)$?	(1)
1.4.5	Give the equation of the asymptote of $g(x)$.	(2)
1.4.6	Give the equation of the axes of symmetry of $f(x)$.	(1)

1.5 Answer the following questions relating to the graphs of: $y \sin(x \ 30^\circ)$ and y = 0.5.

- 1.5.1 Determine the co-ordinates of A, a maximum of the graph. (2)
 1.5.2 B, C, D and E are where the two graphs intersect. Given that
- B(180°; 0.5), find the coordinates of C, D and E. (6) 1.5.3 What is the *y*-intercept of the sine graph? (1)
- 1.5.4What is the amplitude of the sine graph?(1)

1.6 Solve for *x*:

1.6.1	$\frac{x+2}{6} = \frac{1}{2}$	(2)
1.6.2	$\frac{x^2-4}{2x-4}=7$	(4)

1.6.4
$$x^2 > 4$$
 (3)

[43]

(3)

(2)

QUESTION 2

2.1 Given the sequence:

Sequence	3	(5	1	1	1	8	2	7	ŀ)
1 st difference		3		5		x	-	V	2	Ζ	
2 nd difference		2	2				-				

2.1.1	Determine the values of <i>x</i> and <i>y</i> .	(2)
2.1.2	Hence, or otherwise, predict the value of z.	(1)
2.1.3	Determine the value of <i>p</i> .	(2)
2.1.4	What do you notice about the 2 nd differences?	(2)
2.1.5	Determine the 10 th term of the sequence	(4)

- 2.2 The Fibonacci sequence has $T_1 = 1$ and $T_2 = 1$.
 - $T_3 = T_1 + T_2$; $T_4 = T_2 + T_3$; and $T_5 = T_3 + T_4$ and so on 2.2.1 Find the 3rd, 4th and 5th terms

 - In the picture below the two smallest squares each have sides of length 2.2.2 1 unit. What is the length of the side of the largest square?

2.2.3 It is noted that:

 T_1^2 T_2^2 $T_3 \times = T_2$

$$T_1^2 \quad T_2^2 \quad T_3^2 \quad T_4 \times = +$$

From this observation the conjecture is that:

$$T_1^2 \quad T_2^2 \quad T_3^2 \quad \dots \quad T_k^2 \quad T_{k+1} \times \overline{T_k} + + +$$

Is this conjecture correct if k = 6? You may use the diagram in 2.2.2 (5) [21]

(1) (3) (3)

(1)

QUESTION 3

3.1	You purchase a car for R100 000 and the depreciation rate will be 13% per annum on a reducing balance. Inflation is expected to be 8% per annum for the next 5					
	years.					
	3.1.1	In which year will your car lose the greatest value?				
	3.1.2	What will the value of your car be after 5 years?				
	3.1.3	What would the cost of a new car be in 5 years time?				
	3.1.4	If you used your old car as a trade in 5 years time, how much more				
		will you need to buy a similar new car?				
3.2	A bank	offers two account options				
	A) 14,5	% per annum simple interest?				
	B) 14 %	per annum compounded monthly?				
	3.2.1	You have R10 000 to invest for one year. Which option would be the				
		hast for you? Show your working				

best for you? Show your working.	(4)
Would your choice be different if you were investing for 6 months?	
Show your working.	(5)
	[17]
	best for you? Show your working. Would your choice be different if you were investing for 6 months? Show your working.

[22]

QUESTION 4

The graphs of f(x); g(x) and h(x) are drawn below:

Given g(x) = x - 1. Find the *x*-value such that g(x) = 6. 4.1 (1) x^2 4.2 2x + B =f(x)4.2.1 Determine the roots of f(x) = 0. (3) 4.2.2 Find the equation of the axis of symmetry of f(x). (2) 4.2.3 Find the co-ordinates of the turning point of f(x). (2) $h(x) = \frac{a}{x}$ and passes through the point (1; 4) 4.3 4.3.1 Determine the value of *a*. (1) 4.3.2 For which values of x are h(x) decreasing as x is increasing? (2)4.3.3 The graphs of h(x) and g(x) intersect at P. Determine the co-ordinates of P correct to 2 decimal places. (5) 4.3.4 Show that all three graphs are concurrent at P (2) Determine the *x*-values for which h(x) - g(x) > 04.4 (4)

QUESTION 5

The graph of the function f(x) is given below where $f(x) = 2x^2 - x - 6$

5.1	The x-coordinates of A and B are $x = -1,5$ and $x = 0,5$ respectively. Determine	
	the y-coordinates of A and B.	(2)
5.2	Determine the average gradient between A and B.	(2)
5.3	For what values of x is $f(x)$ increasing?	(3)
5.4	Use your graph to determine the coordinates of a point C, where the average gradient between A and C would be 0.	(2)
5.5	Find the coordinates of a point D such that the average gradient between B and D	(\mathbf{a})
	18 5.	(2)
		[11]

QUESTION 6

A disease is killing off a population of fish in a dam at a rate of 10 % every 24 hours. The function $p(x) = A(1-i)^t$ where A is the initial population, *i* is the rate of decrease and *t* is the number of days that have passed.

The following data is collected by researchers:

Days after disease identified (<i>t</i>)	0	1	2	3
Fish Population	A	4500	4050	3645

6.1	Plot this information on a graph.	(3)
6.2	Determine A the initial population of fish in the dam.	(3)
6.3	After how many days will the population of fish be halved? Indicate your solution on	
	your graph.	(5)
		[11]

QUESTION 7

7.1	Solve for <i>x</i> :	
	3 x + 5 - 3	
	$\frac{1}{x+2} - \frac{1}{x^2-4} - 3$	(6)

7.2 Solve simultaneously for *x* and *y* in the following system of equations:

x y 7 = -0; and	
x^2 $y^2 = -25$	(7)
	[13]

QUESTION 8

Below is a feasible region for a linear programming problem.

8.3 For what values of k would T = kx + y have a maximum at point B?

(3) [**12**]

- End of Paper -