MATH

ISEBE LEMFUNDO LEMPUMA KOLONI EASTERN CAPE EDUCATION DEPARTMENT OOS-KAAP ONDERWYSDEPARTEMENT

IIMVIWO ZEBANGA LESHUMI ELINANYE GRADE 11 EXAMINATIONS GRAAD 11-EKSAMEN

NOVEMBER 2008

MATHEMATICS – SECOND PAPER

IXESHA: 3 iiyure AMANQAKU: 150

TIME: 3 hours MARKS: 150 TYD: 3 uur PUNTE: 150

Write on the cover of the answer book after the word, "Subject"-MATHEMATICS – SECOND PAPER

This question paper consists of 10 pages, 1 diagram sheet and a formula sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 11 questions. Answer ALL the questions.
- 2. Show clearly ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
- 3. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 4. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 5. Number the answers correctly according to the numbering system used in this question paper.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. It is in your own interest to write legibly and to present the work neatly.
- 8. An information sheet with formulae is attached.
- 9. A diagram sheet is provided.

In the diagram below, A(-4; 8) and B(1; -4) are two points in a Cartesian plane. C is the y-intercept of the line.

1.6	Hence, determine whether C is the midpoint of AB or not.	(4) [18]
1.5	Determine the coordinates of the point C.	(2)
1.4	Determine the equation of the line AB.	(3)
1.3	Determine the size of θ , the angle of inclination of AB, rounded off to ONE decimal place.	(3)
1.2	Determine the gradient of AB.	(3)
1.1	Calculate the distance between A and B.	(3)

2.1 In the diagram P(-4 ; 3), R(2 ; 5) and Q(1 ; -2) are points in a Cartesian plane.

	2.1.1	Determine the coordinates of M, the midpoint, of PR.	(2)			
	2.1.2	Prove that $PR \perp QM$.	(4)			
	2.1.3	Determine the area of ΔRMQ .	(4)			
2.2	Determi 2y - 3x -	Determine the equation of the straight line which is parallel to $2y - 3x + 7 = 0$ and which passes through the point (2; -4).				
2.3	A(-4 ; -1 the valu), B(-2 ; 0) and C(2 ; p) are on the same straight line. Determine is of p.	(4) [18]			

3.2

3.1 The figure shows triangle ABC.

[17]

4.1

 $POX = \alpha$ and $ROX = \beta$. Use the diagram below to answer the questions:

4.1.1	Determine the length of OP.	(2)
4.1.2	Calculate the value of tan (180° + α).	(2)
4.1.3	If $\hat{POR} = 90^{\circ}$, determine the value of sin β .	(4)
Prove th	e following identities:	
4.2.1	$\sin x \cdot \cos x \cdot \tan x = 1 - \cos^2 x$	(3)
4.2.2	$1 + \cos y = \frac{\sin^2 y}{1 - \cos y}$	(3)

QUESTION 5

4.2

Simplify, without using a calculator:

5.1
$$\frac{\cos(90^\circ + \theta).\sin(-\theta)}{\sin(180^\circ + \theta).\tan(360^\circ + \theta)}$$
 (6)

- 6.1 Solve for θ if: $3 \tan \theta = 6$ and $\theta \in [90^\circ; 360^\circ]$ (4)
- 6.2 Determine the general solution of $\sin 2x.(2\cos x + 1) = 0.$ (9)
- 6.3 Sketch graph of $f(x) = \sin px$ is shown below:

6.3.1	Determine the value of p.	(1)
6.3.2	Determine the values of x if $f(x) = 0$	(2)
6.3.3	What is the minimum value of f(x)?	(1) [17]

QUESTION 7

P represents the cable station on top of Table Mountain and Q is the foot of the mountain. Two people at positions R and S find that the angles of elevation are 35,1° and 23,4° respectively. The distance between them is 3,7 km.

- 7.1 How far is the cable station from the person at S? (5)
- 7.2 Calculate the height of the mountain (PQ). (3)
- 7.3 Calculate the area of ΔPRS . (3)

[11]

(COPYRIGHT 11/08)

QUESTION 8

An hour-glass consists of two identical cones. The top section is filled with sand.

(Surface area = $\pi r^2 + \pi rH$; Volume = $\frac{1}{3}\pi r^2h$)

8.1	Determine the slant height (H) of each cone.	(2)
8.2	Determine the total exterior surface area of the hour glass. (Round the answer off to the nearest mm^2).	(4)
8.3	If it takes 1 hour for the top section to empty, what will the volume of sand be in the bottom section after 15 minutes?	(5) [11]

QUESTION 9

The following data represents the marks a Grade 11 class obtained in a test.

9 10 12 10 28 16 9 7 9 8

Determine the following:

9.2	Draw a b marks.	box and whisker diagram and hence comment on the distribution of	(4) [12]
	9.1.5	the range	(1)
	9.1.4	lower quartile (Q_1) and upper quartile (Q_3)	(2)
	9.1.3	median	(2)
	9.1.2	arithmetic mean	(2)
9.1	9.1.1	the mode	(1)

The following data represents the marks for Mathematics Paper 2 of 30 learners at Majombozi High School.

40	37	73	85	36	38	53	89	70	65	86	45	63	68	65
73	46	58	39	61	72	80	60	58	68	73	68	47	55	58

10.1 Complete the following table:

Interval	Tally	Frequency	Cumulative Frequency
30 – 39			
40 - 49			
50 – 59			
60 - 69			
70 – 79			
80 - 89			

10.2 Draw an ogive curve for the above data.

10.3 Calculate the mean and standard deviation of the 10 sample marks given below:

40	73	85	39	38	72	65	68	63	47	(6)
										[12]

QUESTION 11

Bafana Bafana scored a certain number of goals during 9 consecutive matches. The data below represents the matches and number of goals per match.

Match	Goals
1	0
2	2
3	1
4	3
5	4
6	5
7	5
8	7
9	6

- 11.1 Draw a scatter plot to represent the above data on the diagram sheet. (3)
- 11.2 Which of a linear, quadratic or exponential function would best fit the data? (1)
- 11.3 Draw the graph for the best fit function on your scatter plot. (1)
- 11.4 Estimate the number of goals that can be scored during the 10th match. (1)

[6]

TOTAL: 150

(3)

(3)

DIAGRAM SHEET NAME OF CANDIDATE:_____

QUESTION 3.1

The figure shows triangle ABC.

QUESTION 10.1

Interval	Tally	Frequency	Cumulative Frequency
30 - 39			
40 - 49			
50 - 59			
60 - 69			
70 – 79			
80 - 89			

QUESTION 10.2

QUESTION 11.1

INFORMATION SHEET: MATHEMATICS INLIGTINGSBLAD: WISKUNDE

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
A = P(1 + ni)	A = P(1-ni)				
$A = P(1-i)^n$	$A = P(1+i)^n$				
$\sum_{i=1}^{n} 1 = n$	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$				
$\sum_{i=1}^{n} (a + (i-1)d) = \frac{n}{2} (2a + (n-1)d)$					
$\sum_{i=1}^{n} ar^{i-1} = \frac{a(r^{n} - 1)}{r - 1} ; r \neq 1$	$\sum_{i=1}^{\infty} ar^{i-1} = \frac{a}{1-r} ; -1 < r < 1$				
$F = \frac{x \Big[(1+i)^n - 1 \Big]}{i}$	$P = \frac{x[1 - (1 + i)^{-n}]}{i}$				
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$					
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$				
y = mx + c	$y - y_1 = m(x - x_1)$				
$m = \frac{y_2 - y_1}{x_2 - x_1}$	$m = tan \theta$ $(x - a)^2 + (y - b)^2 = r^2$				
In ∆ABC:					
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c$	$c^2 - 2bc.\cos A$ area $\triangle ABC = \frac{1}{2}ab.\sin C$				
$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \alpha$	$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \alpha$				
$\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta$	$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$				
$\int \cos^2 \alpha - \sin^2 \alpha$					
$\cos 2\alpha = \left\{ 1 - 2\sin^2 \alpha \right\}$	$\sin 2\alpha = 2\sin \alpha . \cos \alpha$				
$\lfloor 2\cos^2 \alpha - 1 \rfloor$					

$$\overline{\mathbf{x}} = \frac{\sum f\mathbf{x}}{n} \qquad \qquad \partial^2 = \frac{\sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}})^2}{n}$$

$$P(\mathbf{A}) = \frac{n(\mathbf{A})}{n(\mathbf{S})} \qquad \qquad P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$